Post Graduate Department of Mathematics Utkal University Proposed Syllabus For M.A/M.Sc. Mathematics Under Choice Based Credit System

Preamble

M.A./M.Sc Mathematics is a two-year postgraduate course that deals with a deeper knowledge of advanced mathematics through a vast preference of geometry, calculus, algebra, number theory, dynamical systems, differential equations etc. Banks, universities, share markets, space agencies, research centers, etc., offer good job opportunities for the graduates. Since mathematics has a good job scope worldwide, students get placed in reputed firms. This course provides training in different aspects of Pure Mathematics, equipping you with a range of mathematical skills in problem-solving, project work and presentation. You have the opportunity to learn advanced core pure mathematics topics together with a range of more specialised options, and undertake an independent research project in your chosen area.

SEMESTER-I

Paper	Course Title	Category	Marks	Credits
MTC101	Real Analysis	Core	100	6
MTC102	Complex Analysis	Core	100	6
MTC103	Topology	Core	100	6
MTC104	Abstract Algebra		100	6
		Core		
MTC105	Data Processing and			
	Numerical			
	Computing Lab	Core	100	6

TOTAL-30

SEMESTER-II

			r	
Paper	Course Title	Category	Marks	Credits
MTC201	Functional Analysis	Core	100	6
MTC202	Differential Equation	Core	100	6
MTC203	Linear Algebra	Core	100	6
MTC204	Numerical		100	6
	Optimization	Core		
MTC205	Data base and C++	Core	100	6
	Lab			

TOTAL-30

SEMESTER-III

Paper	Course Title	Category	Marks	Credits
MTCE301	Numerical Analysis-I	Core Elective	100	6
MTCE302	Number Theory and Cryptography-I	Core Elective	100	6
MTAE303	Statistical Methods	Allied Elective	100	6

MTFE304	Discrete Mathematics	Free Elective	100	6
MTAE305	Differential Geometry/Computational Fluid Dynamics-I/ Theory of Computation-I	Allied Elective	100	6

TOTAL-30

N:B -The department also offers the following core elective papers:

Theory of Relativity-I, Sequence Spaces-I, Numerical solution of Partial Differential Equations-I, Operator Theory-I, Computational Finance-I, Distribution Theory and Sobolev Spaces-I, Fluid Dynamics-I, Beizer Techniques for Computer Aided Geometric Designs-I, Analytic Number Theory-I, Fourier Analysis-I.

The department also offers the following Allied elective papers: Fractal Geometry-I, Design and Analysis of Algorithm –I, Wavelet Analysis-I

Paper	Course Title	Category	Marks	Credits
MTC401	Numerical Analysis-	Core Elective	100	6
	II			
MTC402	Number Theory and	Core Elective	100	6
	Cryptography-II			
MTAE403	Advanced Analysis/	Allied	100	6
	Computational Fluid	Elective		
	Dynamics-II/ Theory			
	of Computation-II			
MTC404	Project	Core	100	6
MTC405	Comprehensive Viva	Core	100	6
	Voce			

SEMESTER-IV

TOTAL-30

N.B- The department also offers the following core elective Papers.

Theory of Relativity-II, Sequence Spaces-II, Numerical solution of Partial Differential Equations-II, Operator Theory-II, Computational Finance-II, Distribution Theory and Sobolev Spaces-II, Fluid Dynamics-II, Beizer Techniques for Computer Aided Geometric Designs-II, Analytic Number Theory-II, Fourier Analysis-II.

The department also offers the following Allied Elective papers:

Fractal Geometry-II, Design and Analysis of Algorithm-II, Wavelet Analysis-II

DETAILED SYLLABUS

SEMESTER-I

MTC101 (REAL ANALYSIS)

(Marks: 100)

Syllabus

Paper-I	Content	Objectives and Expected Outcomes
Unit-I	Metric space, Sequences and series of functions, Uniform convergence, Continuity, Integrability, Differentiability, Equicontinous functions, Weirstrass approximation theorem.	Objectives: Measure theory provides a foundation for many branches of mathematics such as harmonic analysis, ergodic theory, theory of partial differential equations and probability theory. It is a central, extremely useful part of modern analysis, and many further interesting generalizations of measure theory have been developed. It is also subtle, with surprising
Unit-II	Measures and integration, Open sets, cantor like sets, Lebesgue outer measure, Measurable sets, regularity, Measurable functions, Borel and Lebesgue measurability.	sometimes counter-intuitive, results. The aim of this course is to learn the basic elements of Measure Theory, with related discussions on applications in probability theory.
Unit-III	Integration of non-negative functions, the general integral, Integration of series, Riemann and Lebesgue integrals.	Expected Outcomes: After the course the students are expected to be able to: • define and understand basic notions in abstract integration theory, integration theory on topological spaces and
Unit-IV	The four derivatives, Functions of bounded variation, Lebesgue differentiation theorem, Differentiation and integration, the Lebesgue set.	the n-dimensional space • describe and apply the notion of measurable functions and sets and use Lebesgue monotone and dominated convergence theorems and Fatous' Lemma • describe the construction of and apply the Lebesgue integral • describe the construction
Unit-V	The Lp spaces, Convex functions, Jensen's inequality. The inequalities of Holder and Minkowski,Completeness of Lp(μ), convergence in measure, Almost uniform convergence, Convergence diagrams,Counter	of product measures and use Fubini's theorem • describe the notion of absolute continuity and singularities of measures and apply Lebesgue decomposition and the Radon- Nikodym theorem • apply Hölder's and Minkowski's inequalities and describe Riesz representation theorem • describe the notion

examples.	of	extended	real	valued	and	complex
	mea	asures				

1. W.Rudin : Principles of Mathematical Analysis, Chapters 2, 7.

2. G.De. Barra : Measure Theory and Integration (Willey Eastern Ltd.). Chapters 1(1.6 & 1.7), 2(excluding 2.6), 3,4(excluding 4.2), 6, 7.

MTC102 (COMPLEX ANALYSIS) (Marks: 100)

Paper-II	Content	Objectives and Expected Outcomes
Unit-I	Countable and uncountable sets,	
	Infinite sets and the Axiom of choice,	Objective:
	Well-ordered sets. Topological	The objective of this course is to introduce
	spaces, Basis and subbasis for a	the fundamental ideas of the functions
	topology, The order, Product and	of complex variables and developing a clear
	subspace topology, Closed sets and	understanding of the fundamental
	limit points.	concepts of Complex Analysis such as
Unit-II	Continuous functions and	analytic functions, complex integrals and
	homeomorphism, Metric topology,	a range of skills which will allow students
	Connected spaces, Connected	to work effectively with the concepts.
	subspaces of the real line,	Expected Outcomes:
	Components and local connectedness.	The student should be able to Represent
Unit-III	Compact spaces, Basic properties of	complex numbers algebraically and
	compactness, Compactness and finite	geometrically, Define and analyze limits
	intersection property, Compact	and continuity for complex functions as
	subspaces of the real line,	well as consequences of continuity, Apply
	Compactness in metric spaces, Limit	the concept and consequences of analyticity
	point compactness, Sequential	and the Cauchy-Riemann equations and of
	matric spaces. Local compactness and	including the fundamental theorem of
	one point compactification	algebra Analyze sequences and series of
Unit_IV	First and second countable spaces	analytic functions and types of convergence
0111-1 V	Lindelof space Seperable spaces	Evaluate complex contour integrals directly
	Seperable axims Hausdorff Regular	and by the fundamental theorem apply the
	and normal spaces	Cauchy integral theorem in its various
	and normal spaces.	versions and the Cauchy integral formula
		and Represent functions as Taylor, power
Unit-V	The Urysohn lemma Completely	and Laurent series. classify singularities and
	regular spaces, the Urvsohn	poles, find residues and evaluate complex
	metrization theorem, Imbedding	integrals using the residue theorem.
	theorem, Tietu extension theorem,	
	Tychonoff theorem, Stone-Cech	
	campatification.	
	*	

Book Recommended J.B.Conway: Functions of one Complex variable, Springer-Verlag, International Student-Edition, Narosa Publishing House, 1980. Chapters : III, IV(excluding art.6), V.

MTC103 (TOPOLOGY) (Marks: 100)

Paper-II	Content	Objectives and Expected Outcomes
Unit-I	Countable and uncountable sets, Infinite sets and the Axiom of choice, Well- ordered sets. Topological spaces, Basis and subbasis for a topology, The order, Product and subspace topology, Closed sets and limit points.	Objectives: This is an introductory course in topology of metric spaces. The objective of this course is to impart knowledge on open sets, closed sets, continuous functions,
Unit-II	Continuous functions and homeomorphism, Metric topology, Connected spaces, Connected subspaces of the real line, Components and local connectedness.	 connectedness and compactness in metric spaces. Work with topological definitions and theorems related to the content described.
Unit-III Unit-IV	Compact spaces, Basic properties of compactness, Compactness and finite intersection property, Compact subspaces of the real line, Compactness in metric spaces, Limit point compactness, Sequential compactness and their equivalence in matric spaces, Local compactness and one point compactification. First and second countable spaces, Lindelof space, Seperable spaces, Seperable axims, Hausdorff Regular and normal spaces.	 Read and evaluate the correctness of topological proofs. Produce examples and counterexamples that illustrate why theorem hypotheses are necessary or why a statement is untrue. Draw pictures to represent topological ideas. Formulate conjectures about topological concepts, and test these conjectures. Prove topological statements.
Unit-V	The Urysohn lemma, Completely regular spaces, the Urysohn metrization theorem, Imbedding theorem, Tietu extension theorem, Tychonoff theorem, Stone-Cech campatification.	 Use topological ideas (e.g., homeomorphisms, fundamental group) to classify spaces. Present mathematical arguments both orally and in writing. Expected Outcomes: On successful completion of the course students will learn to work with abstract topological spaces. This is a foundation course for all analysis courses in future.

J.R.Munkres - Topology, 2nd Edition, Pearson Education, 2000. Chapters : 1(7,9,10), 2 (excluding section 22), 3, 4(excluding section 36), 5. **Books for Reference**

- 1. K.D.Joshi, Introduction to General Topology, Wiley Eastern Ltd., 1983.
- 2. W.J.Pervin, Foundation of General Topology, Acadmic Press, 1964.
- 3. S.Nanda and S.Nanda, General Topology, Macmillan India.

MTC104 (Abstract Algebra) (Marks-100)

Paper-IV	Content	Objectives and Expected Outcomes
Unit-I	Groups, Subgroups, Cyclic groups, Normal Subgroups, Quotient groups, Homomorphism, Types of homomorphisms,	Objective: Group theory is one of the building blocks of modern algebra. Objective of this
Unit-II	Permutation groups, symmetric groups, cycles and alternating groups, dihedral groups, Isomorphism theorems, Automorphisms, Inner automorphisms, groups of automorphisms and inner automorphisms and their relation with centre of a group	course is to introduce students to basic concepts of group theory and examples of groups and their properties. This course will lead to future basic courses in advanced mathematics, such as Group theory-II and ring theory.
Unit-III	Group action on a set, Conjugacy, Normalizers and Centralizers, Class equation of a finite group and its applications, Direct products, Finitely generated abelian groups, Sylow's groups and subgroups, Sylow's theorems for a finite group, Applications and examples of p-Sylow subgroups, Solvable groups, Simple groups, Applications and examples of solvable and simple groups.	Expected Outcomes: A student learning this course gets idea on concept and examples of groups and their properties. He understands cyclic groups, permutation groups, normal subgroups and related results. After this course he can opt for courses in ring theory, field theory, commutative algebras, linear classical groups etc. and can
Unit-IV	Rings, Some special classes of rings (Integral domain, division ring, field), ideals, quotient rings, ring homomorphisms, isomorphism	be apply this knowledge to problems in physics, computer science, economics

	theorems, prime ideals, maximal ideals, Chinese remainder theorem, Field of fractions, Euclidean Domains, Principal Ideal Domains, Unique Factorization Domains, Polynomial rings, Gauss lemma, irreducibility criteria	and engineering.
Unit-V	Modules, submodules, quotients modules, examples, module homomorphisms, isomorphism theorems	

Text Book:

1. D. S. Dummit, R. M. Foote, "Abstract Algebra", Wiley-India edition, 2013. **References:**

1. I. N. Herstein, "Topics in Algebra", Wiley-India edition, 2013.

2. M. Artin, "Algebra", Prentice-Hall of India, 2007.

3. J. B. Fraleigh-A first Course in Algebra, Pearson, 7th Ed., 2013.

4. J. Gallian - Contemporary Abstract algebra, Brooks/Cole Pub Co; 8 edition, 2012.

MTC105 (DATA PROCESSING & NUMERICAL COMPUTING LAB.) (Marks: 100)

Mid Term- Written test on Part-A(Introduction to Computers): 30 Marks End Term- Record: 8 Marks, Viva: 12 Marks, Expt: 50 Marks(Part-B: 20 Marks, Part-C: 30 Marks.)

Part-A: Introduction to Computers -

Application of Information Technology, Computer system and CPU, Input & output, secondary storage, System and application software(Windows & Linux), Communications & multimedia. **Part-B: Use of scientific software package** (Maple/ Matlab/ Scilab/ Mathematica).

Part-C: Numerical Computation using C.

(1) Basic elements of C, Control structures, Loops, I/O concepts, Arrays, Functions.

(2) Implementation of the following by using C.

(i) Solution of the equation f(x) = 0 by (a) Fixed point iteration method (b) Newton-Raphson method.

(ii) Solving a tridiagonal system of equations. (iii) Solving a system of linear equations by (a) Matrix

Factorisation Method. (b) Gauss-Seidel Method.

(iv) Finding the inverse of a matrix.

(v) Finding least square polynomial fit to a given data.

(vi) Approximating a definite integral by (a) Newton-Cotes Rules. (b) Gauss-Legender Rules.

(vii) Solution of an initial value problem by Runge-Kutta Method of order 4.

(viii) Determination of eigen values of a matrix by Power method/QR method.

Books Recommended

1. J.H. Mathews: Numerical Methods for Mathematics, Science and Engineering (2nd edition), Prentice-Hall of India Pvt. Ltd., New Delhi.

2. B.W. Kernighan and D.M. Ritchie: Programming in ANSI C, Prentice-Hall of India Pvt. Ltd., New Delhi.

SEMESTER-II

MTC201 (FUNCTIONAL ANALYSIS) (Marks: 100)

Paper-I	Content	Objectives and Expected Outcomes
Unit-I	Normed linear spaces,	Objectives:
	Continuity of linear maps, Equivalent norms Habn-	
	Banach theorem for real	Learn the fundamental structures of Functional
	linear spaces, complex	Analysis. Get familiar with the main examples of
	linear spaces and normed	functional spaces, in particular with the theory of
	linear spaces.	Hilbert spaces and Lebesgue spaces. Get familiar
		with the basic notions of operator theory. Be able to frame a functional equation in an abstract functional
		setting.
Unit-II	Banach spaces and	
	examples, Quotient spaces,	
	theorem and some of its	
	consequences. Open	
	mapping theorem and	Expected Outcomes:
	Closed graph theorems,	
TL •4 TT	Bounded inverse theorem.	• recognize inner product spaces
Unit-III	linear operator, Duals and	• Identify duals of some normed spaces.
	transpose, Duals of Lp([a;	• Identify whether a real valued function
		defined on Cartesian product of a vector
Unit-IV	Weak and weak* convergence. Reflexive	space is inner product or not and an inner
	spaces, Weak sequential	product space is Hilbert space or not.
	compactness.	• explain the normed space which is not an
Unit-V	Inner product spaces, Hilbert spaces and	inner product space
	examples, Orthonormal	• identify orthogonal sets
	sets, Bessel's inequality, Complete orthonormal sets	 identify orthogonal sets
	and Parseval's identity,	- Identify of thogonal bets
	Approximation and	• understand the notion of orthogonal
	theorem, Projection	complement and the decomposition of the
	representation theorem.	space
		• explain total sets

• explain main theorems for normed spaces
• explain Hahn -Banach teorem
• identify open mapping theorem
• explain closed gragh theorem

B.V. Limaye: Functional Analysis, New Age International Ltd(2nd Edn.),1995. Chapters:II(Art.5,6,7(except7.12),8),III(Art.9(9.19.3),10,11,12),IV(Art.13,14(14.6,14.7),15,16), VI(Art. 21,22, 23,24).

MTC202 (DIFFERENTIAL EQUATION) (Marks: 100)

Paper-II	Content	Objectives and Expected Outcomes
Unit-I	Existence and Uniqueness of Solutions : Lipschitz condition, Gronwall inequality, Successive approximations, Picard's theorem, Continuation and dependence on initial conditions, Existence of solutions in the large, Existence and uniqueness of solutions of systems, Fixed point method .Systems of Linear Differential Equations : nth order equation as a first order system, Systems of first order equations, Existence and uniqueness theorem, fundamental matrix, Non-homogeneous linear systems, Linear systems with constant coefficients.	Objectives: Differential Equations introduced by Leibnitz in 1676 models almost all Physical, Biological, Chemical systems in nature. The objective of this course is to familiarize the students with various methods of solving differential equations and to have a qualitative applications through models.
Unit-II	Non-linear Differential Equations : Existence theorem, Extremal solutions, Upper and Lower solutions, Monotone Iterative method and method of quasi linearization. Stability of Linear and Nonlinear Systems : Critical points, Systems of equations with constant coefficients, Linear equations with constant coefficients, Lyapunov stability.	The students have to solve problems to understand the methods. Expected Outcomes: A student completing the course is able to solve differential equations and is able to model problems in
Unit-III	Boundary value problems for ordinary differential equations : Sturm-Liouville problem, Eigen value and eigen functions, Expansion in eigen functions, Green's function, Picard's theorem for boundary value problems. Series solution of Legendre and Bessel equations.	nature using Ordinary Differential Equations. This is also prerequisite for studying the course in Partial Differential Equations and models dealing with Partial Differential Equations.

Unit-IV	The Laplaces Equation : Boundary value problem for Laplace's equation, fundamental solution, Integral representation and mean value formula for harmonic functions, Green's function for Laplace's equation, Solution of the dirichlet problem for a ball, solution by seperation of variables, solution of Laplace's equation for a disc.
Unit-V	The wave equation and its solution by the method of separation of variables, D'Alembert's solution of the wave equation, Solution of wave equation by fourier transform method.

1. S.D.Deo, V.Lakshmikantham and V.Raghavendra: Text Book of Ordinary Differential Equations, 2nd Eidtion, TMH. Chapters : 4(4.1-4.7), 5, 6(6.1-6.5), 7(7.5), 9(9.1-9.5).

2. J.Sinha Roy and S.Padhy: A Course on Ordinary and Partial Differential Equations, Kalyani Publishers. Chapters: 10, 15, 16 and 17

Paper-III	Content	Objectives and Expected Outcomes
Unit-I	Vector Spaces, Subspaces, Linear independence, bases, Dimension, Projection, Quotient spaces, Isomorphism of vector spaces, Algebra of matrices, Rank and Inverse of matrix, The Algebra of Linear transformation, Kernel, range, matrix representation of a linear transformation, Change of bases, Dual spaces.	 Objectives: linear algebra helps the student understand geometric concepts such as planes, in higher dimensions, and perform mathematical operations on them. It can be thought of as an extension of algebra into an arbitrary number of dimensions. Rather than working with scalars, it works with matrices and vectors. Expected Outcomes: analyze the solution set of a system of linear equations.
Unit-II	System of Linear equations, Characteristic roots and Vectors, eigen values, eigen vectors, Cayley-Hamilltorn	 express some algebraic concepts (such as binary operation, group, field). do elemantary matrix operations.

MTC203 (LINEAR ALGEBRA) (Marks: 100)

theorem, Forms: I triangular form, Rat form, Rat form, Rat form, Rat form, nilpotent Primary theorem I Inner ProdUnit-IIIAlgebric fields polynomic criterion, roots, extension closed f separable Splitting extension .	theorem, Canonical Forms: Diagonal forms, triangular forms, Jordan		• express a system of linear equations in a matrix form.
	form, Rational Canonical form, Invariants of nilpotent transformation, Primary decomposition theorem Quadratic form, Inner Product spaces. Algebric extensions of fields : Irreducible polynomials and Einstein criterion, Adjunction of roots, Algebraic extensions. Algebraically closed fields, Normal		 do the elementary row operations for the matrices and systems of linear equations. investigate the solition of a system using
			Gauss elimination.apply Cramer's rule for solving a system of
			linear equations, if the determinant of the matrix of coefficients of the system is not zero.
	Splitting fields, Normal extensions.		generalize the concepts of a real (complex) vector space to an arbitrary finite-dimensional vector space.
Unit-IV	Normal separable extensions: Multiple roots, Finite fields, Separable extensions. Galois Theory: Automorphisim groups and fixed fields, Fundamental theorem of Galois theory.		definite a vector space and subspace of a vector space.
			 explain properties of R^n and subspaces of R^n. determine whether a subset of a vector
			space is linear dependent.describe the concept of a basis for a vector
Unit-V	theory to classical problems: Roots of unity		space.
F e S S F C	and Cyclotomic polynomials, Cyclic extensions, Polynomials solvable by radicals, Symmetric functions, Ruler and compass constructions.	•	subspaces using by linear transformations.
			express linear transformation between vector spaces.
			 represent linear transformations by matrices.
			 explain what happens to representing matrices when the ordered basis is changed.

• describe the concepts of eigenvalue,
eigenvector and characteristc polynomial.
• determine whether a linear transformation is diagonalizable or not.

- 1. I. N. Herstein, "Topics in Algebra", Wiley-India edition, 2013.
- 2. M. Artin, "Algebra", Prentice-Hall of India, 2007.
- 3. J. Rotman, "Galois Theory", Universitext, Springer-Verlag, 1998.
- 3. I.S. Luthar and I.B.S Passi: Algebra (Vol-3-Modules), Narosa Publishing House.

MTC204 (NUMERICAL OPTIMIZATION)

Paper-I	Content	Objectives and Expected Outcomes
Unit-I	One Dimensional	Objectives:
	Optimization:	• find acceptable approximate solutions when
	Introduction, Function	exact solutions are either impossible or so
	comparison methods,	arduous and time-consuming as to be
	Polynomial Interpolation,	impractical;
	Iterative methods	• devise alternate methods of solution better
Unit-II	Gradient Based	suited to the capabilities of computers;
	Optimization Methods(I):	• formulate problems in their fields of
	Calculus on Rn, Method of	research as optimization problems by defining
	Steepest Descend,	the underlying independent variables, the
	Conjugate Gradient	proper cost function, and the governing
	Method, The Generalized	constraint functions.
	reduced Gradient Method,	Expected Outcomes:
	Gradient Projection	• understand how to assess and check the
	Method.	feasiblity and optimality of a particular
Unit-III	Gradient Based	solution to a general constrained optimization
	Optimization Methods(II):	problem; • use the optimality conditions to
	Newton type Methods(search for a local or global solution from a
	Newton's method,	starting point;
	Marquardt's method),	• formulate the dual problem of some general
	Quasi Newton Methods.	optimization types and assess their duality
		gap using concepts of strong and weak
		duality;
Unit-IV	Linear Programming:	• understand the computational details behind
	Convex Analysis, Simplex	the numerical methods discussed in class,
	Method, Two Phase	when they apply, and what their convergence
	Simplex Method, Duality	rates are.
	Theory, Dual Simplex	
	Method.	

N.B.-The mid-semester examinations (Marks:30) will be a programming assignment followed by a viva-voce test.

Books Recommended

1. M.C. Joshi and K.M. Moudgalya-Optimization: Theory and Practice, Narosa Publishing House, 2004.

2. J.A. Snyman Practical Mathematical Optimization, Springer Sciences, 2005.

MTC205 (DATABASE & C++ LAB.) Marks: 100 (Mid Term- 30, End Term- Viva:12, Record:8, Experiment:50)

Part-A - Use of a RDBMS package(Marks:10)

Part-B - Implementation of algorithms and program studied in units 2,3 and 4 of paper IX.(Marks:40)

SEMESTER-III

MTCE301 (NUMERICAL ANALYSIS-I) (Marks-100)

Paper-I	Content	Objectives and Expected
		Outcomes
Unit-I	Solution of equations in one and two variables: Fixed point iteration method, Accelerate on of convergence, Zeros of polynomials and Muller's method, fixed points for functions of several variables, Newton's method.	Objectives: To provide the numerical methods of solving the non-linear equations, interpolation, differentiation, and integration. To improve the student's skills in
Unit-II	Interpolation : Hermite interpolation, Cubic spline interpolation, parametric curves, Hermite, Bazier and B spline curves.	numerical methods by using the numerical analysis software and computer
Unit-III	Least square approximation, Discrete	tacilities.
	L.S.approximation, Orthogonal polynomials, Chebyshev poly-nomials and economization, rational approximation.	Apply numerical methods to find our solution of algebraic equations using different
Unit-IV	Numerical integration : Elements, Composite integration, Romberg integration, Gauss quadrature.	methods under different conditions, and numerical solution of system of
Unit-V	Approximation of multiple integrals : Product rules, Rules exact for monomials, Radon formula for approximation of integrals in two dimensions.	algebraic equations. Apply various interpolation methods and finite difference concepts. Work out numerical differentiation and integration whenever and wherever routine methods are not applicable. Work numerically on the ordinary differential equations using different methods through the theory of finite differences. Work numerically on the partial differential equations using different methods through the theory of finite differences.

1. Numerical Analysis (7th Edition) by R.L.Burden and J.D.Faires, (Books/Cole, Thomson learning)

2. Methods of Numerical Integration (4th Edition) by P.J.Davis and Rabinowitz (AP).

Paper-I	Content	Objectives and Expected
		Outcomes
Unit-I	Divisibility and primes, Modular arithmetic. Time estimates for doing arithmetic.	Objective : The main objective of this
Unit-II	Cryptography : Classical cryptosystem and their vulnerability public key cryptography, RSA scheme.	course is to build up the basic theory of the integers, prime numbers and their primitive
Unit-III	Primality testing and factoring, Primitive roots, EI gamal system. Signature scheme,Quadratic congruences and applications.	roots, the theory of congruence, quadratic reciprocity law and number
Unit-IV	Continued fractions, Factoring methods, Diophantine approximations.	theoretic functions, Fermat's last theorem, to acquire knowledge in cryptography
Unit-V	Diophantine equations, Arithmetical functions and Dirichlet series, Quadratic reciprocity law.	specially in RSA encryption and decryption.
		Expected Outcomes:
		Upon successful completion of this course students will able to know the basic definitions and theorems in number theory, to identify order of an integer, primitive roots, Euler's criterion, the Legendre symbol, Jacobi symbol and their properties, to understand modular arithmetic number-theoretic functions and apply them to cryptography.

MTCE302 (NUMBER THEORY and CRYPTOGRAPHY-I)

(Marks-100)

Book Recommended

1. Ramanujachary Kumanduri and Christina Romero : Number Theory with Computer Applications, Prentice Hall, New Jersy, 1998.

2. Neal Koblitz : A course of Number Theory and Cryptography, Second Edition, Springer Verlag, New York, 1987.

MTAE303 (STATISTICAL METHODS)

Paper-I	Content	Objectives and Expected Outcomes
Unit-I	Review of descriptive	Objectives:
	statistics-detailed study on the interpretation, analysis and measurements of	1. Students should be familiar with the terminology and special notation of statistical analysis. The terminology consists of the following:
	various numerical characteristics of a	a. Statistical Terms
	frequency distribution.	i. Population
Unit-II	Concepts of univariate	ii. Sample
01111-11	and bivariate	iii. Parameter
	distributions, curve fittings, regression and	iv. Statistic
	correlation analysis, rank correlation, correlation ratio, intra-	v. Descriptive Statistics vi. Inferential Statistics vii. Sampling Error
	class correlation.	b. Measurement Terms
Unit-III	Concept of multivariate	i. Operational definition
	distribution, multiple	ii. Nominal
	regression analysis, partial and multiple	iii. Ordinal
	correlations and their properties, Random	iv. Interval
	sampling, sampling distribution and	v. Ratio
	standard error, standard	vi. Discrete variable
	functions of moments.	vii. Continuous variable
		viii. Real limits
Unit-IV	Exact sampling distributions-t, F and	c. Research Terms
	chi-square distributions, sampling from bivariate	i. Correlation method
	normal distribution,	

	distribution of sample	ii. Experimental method
	correlation coefficient (null case) and	iii. Independent variable
	regression coefficient, tests based on t, F and	iv. Dependent variable
	chi-square distributions.	v. Non-experimental method vi. Quasi-independent variable
Unit-V	Theory of attributes: classes, its order, class frequencies,	2. Students should learn how statistical techniques fit into the general process of science 3. Students should learn the notation, particularly summation notation.
	consistency of data, independence and association of attributes, coefficients of association and colligation.	4. Students should understand the concept of a frequency distribution as an organized display showing where all of the individual scores are located on the scale of measurement.
		5. Students should be able to organize data into a regular or a grouped frequency distribution table, and understand data that are presented in a table.
		Expected Outcomes:
		Students should be able to:
		 Distinguish types of studies and their limitations and strengths, Describe a data set including both categorical and quantitative variables to support or refute a statement, Apply laws of probability to concrete problems, Perform statistical inference in several circumstances and interpret the results in an applied context, Use mathematical tools, including calculus and linear algebra, to study probability and mathematical statistical procedures, Use a statistical software package for computations with data, Use a computer for the purpose of simulation in probability and statistical inference, and Communicate concepts in probability and statistics using both technical and non-technical language

- 1. Mukhopadhyaya, P., Mathematical statistics, New central Book Agency, Calcutta.
- 2. Gun, A.M., Gupta, M.K. and Dasgupta, B., An outline of statistical theory, vol II (4th Edition), World press
- 3. Kale, B. K., A first course in parametric inference, Narosa publishing house
- 4. Kingman, J.F.C. and Taylor, S. J., Introduction to measure and probability, Cambridge university press

MTFE304 (DISCRETE MATHEMATICS) (Marks-100)

Paper-I	Content	Objectives and Expected
		Outcomes
Unit-I	Fundamentals of logic, Logical inferences, Methods of proof of logical inferences, First order logic, Inference for quantified propositions, Order relations, Posets, Lattices, Enumerations, Hasse diagrams, Path and closure, Discrete graphs, and adjacency matrices.	Objectives: This is a preliminary course for the basic courses in mathematics and all its applications. The objective is to acquaint students with basic counting principles, set theory and logic, matrix theory and graph
Unit-II	Boolean algebra, Boolean functions, Switching mechanisms, Cannonical forms, Minterms, Minimization of Boolean functions.	Expected Outcomes: The acquired knowledge will help students in simple mathematical modeling. They can study advance
Unit-III	Graphs: Basic concepts, Isomorphic graphs, Sub-graphs, Trees and properties, Spanning trees, Directed trees and Binary trees.	courses in mathematical modeling, computer science, statistics, physics, chemistry etc.
Unit-IV	Planar graphs, Euler formula, Multi graphs and Euler Circuits, Hamiltonian graphs, Chromatic numbers.	
Unit-V	Network flows: Graphs as models of flow of commodities, flows, Maximal flows, and minimal cuts, Max-flow Min-cut theorem.	

Book Recommended

1. J.L. Mott, A. Kendel and T.P. Baker: Discrete mathematics for Computer Scientists and Mathematicians,

Chapters-I(1.5-1.9), IV(4.4-4.7), V(5.1-5.11), VI(6.1-6.5), VII(7.1-7.4).

MTAE305 (DIFFERENTIAL GEOMETRY) (Marks-100)

Paper-I	Content	Objectives and Expected Outcomes
Unit-I		Objectives:
	Preliminary Comments on Rn, Topological Manifolds, Differentiability for Functions of Several	 To get introduced to the concept of a regular parameterized curve in n To Understand the concept of curvature of a space
	Variables, Differentiability of Mappings and Jacobians, The Space of Tangent Vectors at a	 To be able to understand the fundamental theorem for plane curves.
Unit-II	point of Rn.	• To get introduced to the notion of Serret-Frenet frame for space curves and the involutes and evolutes of space curves with the help of examples.
	Differential Manifold, Example of Differential Manifolds,	• To be able to compute the curvature and torsion of space curves.
	Differentiable Functions and Mappings, The Tangent	• To be able to understand the fundamental theorem for space curves.
	Manifold, Vector Fields, Tangent	• To get introduced to the concept of a parameterized surface with the help of examples.
	on Manifolds, Covector Fields and Mappings, Bilinear Forms, The	• To Understand the idea of orientable/non-orientable surfaces.
	Riemannian Metric, Riemannian Manifolds as Metric Spaces.	• To get introduced to the idea of first fundamental form/metric of a surface.
	Tensors on a Vector Space.	• To Understand the normal curvature of a surface, its connection with the first and second fundamental form and Euler's theorem
Unit-III	: Lie Groups, The Action of a Lie Group on a Manifold, The Action of a Discrete	• To Understand the Weingarton Equations, mean curvature and Gaussian curvature.
	Group on a Manifold, One parameter and local one parameter	• To understand surfaces of revolution with constant negative and positive Gaussian curvature.
	Groups acting on a Manifold, The Lie Algebra of Vector	• To understand the isometry between two surfaces and characterization of local isometry between them.
	rieius oli a Manifold.	• 10 be introduced to Christoffel symbols and their expression in terms of metric coefficients and their
Unit-IV	Tensor Fields, mapping	

	and Covariant Tensors,	deriva	ttives.
	Symmetrising and		
	Alternating	• To p	prove Theorema Egregium of Gauss.
	I ransformations, Multiplication of		
	Tensors on a Vector	• 101	Discuss the fundamental Theorem for regular
	Space, Multiplication of	and th	eir characterization
	Tensor Fields, Exterior	and th	
	Multiplication of	• To t	inderstand geodesics as distance minimizing
	Alternating Tensors,	curves	s on surfaces.
	Exterior Algebra on Manifolda Exterior		
	Differentiation	• To f	ind geodesics on various surfaces.
Unit-V	Differentiation of	- 	
	Vector Fields along	• 101 for a (Discuss Gauss Bonnet theorem and its implication
	curves in Rn, The	101 a g	
	Geometry of Space	Expec	ted Outcomes:
	of Vector Fields on	-	
	Submanifolds of Rn.	Stude	nts should be able to:
	Formulas for Covariant		
	Derivatives,	•	define the equivalance of two curves.
	Differentiation on Riemannian Manifolds		• find the derivative map of an isometry.
	The Curvature Tensor,		
	The Riemannian		• analyse the equivalence of two curves by
	Exterior Differential		applying some theorems.
	Forms, Basic Properties	•	defines surfaces and their properties
	of Riemannian		e express definition and parametrization of
	Curvature Forms and		• express definition and parametrization of
	the equations of		surfaces.
	Structure.		• express tangent spaces of surfaces.
			• explain differential maps between surfaces
			and find derivatives of such maps.
			integrate differential forms on surfaces
			• Integrate differential forms on surfaces.
		•	nst topological aspects of surfaces.
			• define the concept of manifolds.
			• give examples of manifolds and investigate
			their properties
			men propernes.

William Boothby: An Introduction to Differentiable manifolds and Riemannian Geometry, Academic Press, New York.

OR

MTAE305 (COMPUTATIONAL FLUID DYNAMICS-I)

Paper-I	Content	Objectives and Expected Outcomes
Unit-I	Basic Concepts, Continuum Hypothesis, Viscosity, Strain Analysis, Stress Analysis, Relation between Stress and Rate of Strain, Thermal Conductivity, Law of Heat Conduction.	Objectives: A tool that allows the student to visualize complex flow phenomena in a virtual environment can significantly enhance the learning experience. Such a visualization tool allows the student to perform open-ended analyses and explore cause-effect relationships. Computational fluid dynamics (CFD) brings these benefits into the learning environment for fluid mechanics. Expected Outcomes
Unit-II	EquationofContinuityinVector Form and in	• solve hydrostatic problems.
	 Various Coordinate Systems, Boundary Conditions, Navier- Stokes Equations, Energy Equations, Vorticity and Circulation in Viscous Flow. 	 describe the physical properties of a fluid. calculate the pressure distribution for incompressible fluids. calculate the hydrostatic pressure and force on plane and curved surfaces.
Unit-III	Dynamical Similarity by Inspection Analysis, Physical Importance of Non- Dimensional Parameters, Important Non- Dimensional Coefficients in the Dynamics of Viscous Fluids.	 demonstrate the application point of hydrostatic forces on plane and curved surfaces. formulate the problems on buoyancy and solve them. describe the motion of fluids. describe the principles of motion for fluids. describe the areas of velocity and acceleration. formulate the motion of fluid element. identify derivation of basic equations of fluid
	Exact Solution of Navier-Stokes	

	Equations (Flow	mechanics and apply
	between Parallel	incentances and appry
	Plates, Circular	• identify how to derive basic equations and know
	Pipes -Velocity and	the related assumptions.
	Temperature	1
	Distribution).	• apply the equation of the conservation of mass.
		• apply the equation of the conservation of
Unit-IV	Finite Difference	
	met	momentum
	hods	• apply the equation of the conservation of energy.
	for	
	Para	• make dimensional analysis and similitude.
	boli	• use the dimensional analysis and derive the
	с	dimensionless numbers
	Equ	diffensioness numbers
	atio	• apply the similitude concept and set up the
	n in	relation between a model and a prototype
	one	Telution between a model and a prototype.
	Spac	
	e	
	Vari	
	able	
	(Exp ligit	
	Met	
	hod	
	and	
	Its	
	Con	
	verg	
	ence	
	,	
	Four	
	ier	
	Anal	
	ysis	
	of	
	the	
	Erro	
	r,	
	Impl	
	icit	
	and	
	Wei	

ghte	
d	
Ave	
rage	
Met	
hods	
and	
Thei	
r	
Con	
verg	
ence	
).	
Finit	
e	
Diff	
eren	
ce	
Met	
hod	
for	
Нур	
erbo	
lic	
Equ	
atio	
ns in	
one	
Spac	
e	
Dim	
ensi	
on,	
Char	
acter	
istic	
s,	
The	
CFL	
Con	
ditio	
n,	
Furi	
or	

		Erro	
		r	
		Anal	
		ysis	
		of	
		The	
		Upw	
		ind	
		Sche	
		me	
		The	
		Lax-	
		Wen	
		drof	
		f	
		Shee	
		me	
		and	
		ite	
		Ann	
		Licot	
		ion	
		to	
		l0 Con	
		Coll	
		serv	
		alio	
		n T	
		Law	
		s.	
Unit-V	Consistency,		
		Con	
		verg	
		ence	
		and	
		Stab	
		ility	
		of	
		Finit	
		e	
		Diff	
		eren	
		ce	
		Met	
	1	-	

hods	
,	
Intro	
duct	
ion	
to	
Finit	
e	
Vol	
ume	
Met	
hod.	

Text Books Recommended:

- 1. J.L.Bansal Viscous Fluid Dynamics, Oxford University Press.
- 2. K.W, Morton & D.F.Mayers Numerical Solution of Partial Differential Equations, Second Edition, 2005, Cambridge University Press.

Reference

1.P.Wesseling – Principles of Computational Fluid Dynamics, Springer Verlag, 2000.

2.T.Petrila and D.Trif – Basics of fluid Mechanics and Introduction to Computational Fluid Mechanics, Springer Verlag, 2005.

- 1. Z.U.A.Warsi Fluid Dynamics Theoretical and Computational Approach, CRC Press.
- 2. M.D.Raisinghania Fluid Dynamics, S.Chand and Company.

OR

MTAE305 (THEORY OF COMPUTATION-I)

Paper-I	Content	Objectives and Expected Outcomes
Unit-I	Introduction to Automata & Computability theory, Mathematical preliminaries.	Objectives: To understand the concept of machines: finite automata, pushdown automata, linear bounded automata, and Turing machines. To understand the formal languages and grammars: regular

Unit-II	Finite	grammar and regular languages, context-free languages and
	automata and	context-free grammar; and introduction to context-sensitive
	Non-	language and context-free grammar, and unrestricted grammar
	determinism.	and languages.
		To understand the relation between these formal languages.
Unit-III	Regular	grammars, and machines.
	expressions,	
	Pumping	To understand the complexity or difficulty level of problems
	lemma for	when solved using these machines.
	regular	To understand the concept of algorithm
	languages.	To understand the concept of argorithm.
		To compare the complexity of problems.
Unit-IV	Context-Free	
	Grammars and	Expected Outcomes:
	Pumping	
	lemma for	
	Context free	Demonstrate advanced knowledge of formal computation
	languages.	and its relationship to languages
		• Distinguish different computing languages and classify
Unit V	Duchdown	their respective types
Unit- v	1 ushuowh	• Recognise and comprehend formal reasoning about
	automata.	languages
		• Show a competent understanding of the basic concepts of
		complexity theory

1. Michael Sipser: Introduction to the Theory of Computation, PWS Publishing Company, 1997, First Reprint 2001 by thomson Asia Pvt. Ltd.

2. J.E. Hopcroft, Rajeev Motwani, J.D. Ullman: Introduction to Automata Theory, Languages & Computation, Pearson Education, Inc. 2001.

3. Peter Linz: An Introduction to Formal Languages & Automata, Narosa Publishing House, 1998.

The Dept. also offers the following Core Elective Papers

Paper-I	Content	Objectives and Expected Outcomes
Unit-I	Foundations of Special Relativity	Objectives :
Unit-II	Electromagnetic field.	Orderstand the motivation for developing the Theory of Special Relativity.

Theory of Relativity-I (Marks-100)

Unit-III Unit-IV	Accelerated observers and incompatibility with special relativity. Geodesic deviation and spacetime curvature.	 Understand Einstein's postulates and their consequences. Understand how to apply Einstein's postulates to describe simultaneity. Understand how to model length contraction and time dilation. Understand how to apply Lorentz transformations
Unit-V	Riemannian Geometry: Metric as foundation of all.	 and make space-time diagrams. Understand how to model the energy and momentum of a relativistic object.
		 Expected Outcomes: Describe the basic concepts of the theory of relativity. Differentiate facts from wrong general public ideas about the theory of relativity. Discuss postulates of the special theory of relativity and their consequences. Explain the twin paradox. Explain the concept of invariance. Explain the concept of space-time. Discuss the equivalence principle. Describe gravity as space-time curvature. Describe the basic characteristics of black holes and gravity waves. Describe general theory of relativity as mathematical basis of physical cosmology.

Gravitation by C.W. Misner, K.S. Thorne, J.A. Wheeler(W.H. Freeman). Chapters:2(Unit-1),3(Unit-2),6.1 & 7(Unit-3),11(Unit-4),13(Unit-5).

(IVIALKS-100)			
Paper-I	Content	Objectives and Expected Outcomes	
Unit-I	Foundations of	Objectives :	
	Special		
	Relativity.	To know	
Unit-II	Electromagnetic		
	field.	• Sequence spaces and their topological and geometric	
Unit-III	Accelerated	properties	
	observers and	• Special summability methods in the space of functions	
	incompatibility	Positive linear operators and approximation methods	
	with special	Korovkin's type approximation	
	relativity.	• Measures of noncompactness and their applications in	
Unit-IV	Geodesic	characterizing compact matrix operators	

Sequences Spaces-I (Marks-100)

devia space curva	etime and • etime ature.	• Applications to differential, integral, functional integral and integro-differential equations in sequence spaces and function spaces	
Unit-V Ria Ga M four	emannian eometry: fetric as ndation of all.	 understand the Euclidean distance function on Rⁿ and appreciate its properties, and state and use the Triangle and Reverse Triangle Inequalities for the Euclidean distance function on Rⁿ explain the definition of continuity for functions from Rⁿ to R^m and determine whether a given function from Rⁿ to R^m is continuous explain the geometric meaning of each of the metric space properties (M1) – (M3) and be able to verify whether a given distance function is a metric distinguish between open and closed balls in a metric space and be able to determine them for given metric spaces define convergence for sequences in a metric space and determine whether a given sequence in a metric space converges state the definition of continuity of a function between two metric spaces. 	

1. I.J. Maddox: Elements of Functional Analysis, Cambridge Univ. Press, 1970. Chapter: 7 only.

2. G.M. Peterson: Regular Matrix Transformation, McGraw Hill. Chapter: 2(2.1-2.3).

Numerical Solution of Partial Differential Equations-I (Marks-100)

Paper-I	Content	Objectives and Expected	
		Outcomes	
Unit-I	Introduction to finite difierences (finite	Objectives:	
	difference approximation of partial differential	To provide the numerical	
	equations (PDE), derivation of difference	methods of solving the non-	
	equations), convergence and consistency of	linear equations, interpolation,	
	difference schemes for Intial-Value problems	differentiation, and integration.	
	and initial-boundary value problems.	To improve the student's skills in	
Unit-II	Stability of difference schemes for initial-	numerical methods by using the	
	value-problems and initial-boundary value	computer facilities A major	
	problems, The lax theory, Implicit schemes,	advantage of numerical method	
	Analysis of stability, Finite fourier series and		

	stability, Computational	is that a numerical solution can be obtained for problems, where
Unit-III	<u>:</u> Parabolic Equations : Difference schemes for two dimensional parabolic equation, Convergence, Consistency and Stability, Alternating direction implicit schemes (Peaceman-Rachford scheme, Stability consistency and implementation; douglas- Rachford scheme and its stability), Difference schems in polar cordinates	an analytical solution does not exist. An additional advantage is, that a numerical method only uses evaluation of standard functions and the operations: addition, subtraction, multiplication and division.
Unit-IV	Hyperbolic equations : Initial-value problems, Explict & implicit difference schemes for IVP(one sided, centred, lax-windroff and crank-Nicolson schems), Initial-Boundary- value problem and their difference schemes, Two dimensional hyperbolic equations and difference schemes, CFL conditions, Computational considerations.	 Apply a range of techniques to find solutions of standard Partial Differential Equations (PDE) Understand basic properties of standard PDE's. Demonstrate accurate and efficient use of Fourier analysis techniques and their applications in the theory of PDE's. Demonstrate capacity to model physical phenomena using PDE's (in particular using the heat and wave equations). Apply problem-solving using concepts and techniques from PDE's and Fourier analysis applied to diverse situations in physics, engineering, financial mathematics and in other mathematical contexts.
Unit-V	Rieview of classical iterative methods (Gauss- Jacobi, Gause-Seidel, SOR, Gradient methods, Conjugate gradient and the minimal residual method, Pre-conditioning, Multigrid methods, Convergence of multigrid methods, Computation of starting values using multigrid method, non-linear multigrid method.	

1. J.W.Thomas: Numerical Partial Differential Equations (Fintie Difference Methods), Springer Verlag, 1995. Chapters : 1,2,3,4,5.

2. D.Braess: Finite Elements, Cambridge University Press, 1997. Chapters : IV, V.

Books References

1. K.W.Morton and D.F.Mayers: Numerical Solution of Partial Differential Equations, Cambridge University Press, 1994.

2. J.C.Strikwerda: Finite Difference Scheemes and Partial Differential Equations, Wadsworth and Books, 1889.

3.W.Hackbusoh: Interative Solution of Large Sparse System of Equations, Springer-Verlag, 1994.

Operator Theory-I	
(Marks-100)	

Paper-I	Content	Objectives and Expected Outcomes	
Unit-I	Introduction,	Objectives .	

Unit-II	Complex homomorphisms. Basic properties of spectrum, Symbolic calculus.	To study linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators or closed operators, and consideration may be given to nonlinear operators. The study, which depends heavily on the topology of function spaces, is a branch of functional analysis.	
Unit-III	Differentiation, the groups of invertible elements, Commutative Banach algebra.	 Expected Outcomes: Prove the continuity of concrete linear operators between topological vector spaces. Given a linear operator, understand whether or 	
Unit-IV Unit-V	Ideals and homomorphisms, Gelfand transform. Involutions, Application to non-commutive	 Find the essential spectra of linear operator Find the maximal spectra of concrete commutative Banach algebras. Describe the functional calculi and the spectra of concrete commutative banach algebras. 	
	algebra, Positive functionals	decompositions of concrete selfadjoint operators	

Book Recommended W.Rudin : Functional Analysis (TMH), Chapter: 10, 11.

Computational Finance-I (Marks-100)

Paper-I	Content	Objectives and Expected Outcomes		
Unit-I	Basic concepts of financial derivatives (forwards and futures, stock options, speculation, hedging), Putcall parity, Principle of non-arbitrage pricing, Black- Scholes Option Pricing formula and the 'Greeks', Implied volatility Hedging strategies, American option pricing modele.	Objectives : To provide the students with a strong mathematical background with the skills necessary to apply their expertise to the solution of problems. You will develop skills to formulate mathematical problems that are based on the needs of the financial industry. You will carry out relevant mathematical and financial analysis, develop and implement appropriate tools to present and interpret model		
Unit-II	Stochastic processes, Markov processes, Random walks, Arithmetic Brownian motion, Geometric Brawnian motion, Martingles.			
Unit-III	Stochastic integrals, Ito integral, Ito's lemma, Mean-reverting processes, Derivation of Black-Scholes differential	results.		

	equation, Kolmogorov equations	
Unit-IV	Finite difference methods for partical differential equations - finite difference approximation to derivatives, Local truncation error, Convergence, Consistency and stability, Explicit implicit and ADI schemes for parabolic equations, Finite difference method for elliplic equations, Solution of sparse system of linear equations.	 Expected Outcomes: Analyze and simulate time series data using a stochastic process. Implement a portfolio optimization algorithm based on Modern Portfolio Theory.
Unit-V	Numerical schemes for pricing options. Binomial pricing models and extensions, Explicit and implicit finite difference methods for Europian and American options, Monte Carlo simulation. Note: The midterm test shall be on computer implementation of algorithms and methods studied.	 Demonstrate an in-depth knowledge of: Bond Valuation Models. Stock Valuation Models. Options Valuation Models.

\

Book Recommended

1. J.Bax and G.Chacko-Financial Derivatives : Pricing, Applications and Mathematics-Cambridge Univ. Press, 2004.

2. Steven Shreve-Stochastic Calculus and Finance, Vol.I and II-Springer Verlag.

3. P.Wilmott-Paul Willmott on Quanktative Finance-John Wiley, 2000.

4. Y.K.Kwok-Mathematical Models of Financial Derivatives-Springer Verlag.

5. G.Evans, J.Blackledge and P.Yardly-Numerical Methods for Partial Differential Equations-Springer Verlag, 2000.

6. Y.D.Lyun-Financial Engineering and Computation : Principles, Mathematics and Algorithms-Cambridge Univ. Press, 2002.

7. J.C.Hull-Options, Futures and other Derivatives-Prentice Hall of India, 2003.

(Marks-100)			
Paper-I	Content	Objectives and Expected Outcomes	
Unit-I	Test functions and	Objectives :	
	distributions, Operation	To study Sobolev spaces and their applications in the	
	with distributions.	elliptic boundary value problems and their finite	
Unit-II		element approximations are presented. Also many	
	Supprots and singular	additional topics of interests for specific applied	
	supports of distributions,	disciplines and engineering, for example, elementary	
	Convolution of functions	solutions, derivatives of discontinuous functions of	
	and distributions.	several variables, delta-convergent sequences of	

Distribution Theory and Sobolev Spaces-I

Unit-III	Fundamental solutions,	functions. Fourier series of distributions, convolution		
	Fourier transform,	system of equations etc. have been included along with		
	Schwartz space, Fourier	many interesting examples.		
	inversion formula,	Expected Outcomes:		
	Tempered distributions.	•	Student will develop	
	_	i.	Capability of demonstrating	
Unit-IV	Definitions and basic		comprehensive knowledge of	
	properties of Sobolev		mathematics and understanding of	
	spaces.		one or more disciplines of	
	-		mathematics.	
Unit-V	Approximation of	ii.	Ability to communicate various	
	elements of a Sobolev		concepts of mathematics effectively	
	space by smooth		using examples and their	
	functions.		geometrical visualizations.	
		iii.	Ability to use mathematics as a	
			precise language of communication	
			in other branches of human	
			knowledge.	
		iv.	iv. Ability to employ critical	
			thinking in understanding the	
			concepts in every area of	
			mathematics.	
		v.	Ability to analyze the results and	
			apply them in various problems	
			appearing in different branches of	
			mathematics.	
		vi.	Ability to provide new solutions	
			using the domain knowledge of	
			mathematics by framing appropriate	
			questions relating to the concepts in	
			various fields of mathematics.	
		vii.	To know about the advances in	
			various branches of mathematics.	
		viii.	Capability to understand and apply	
			the programming concepts of C to	
			mathematical investigations and	
			problem solving.	
		ix.	Ability to work independently and	
			do in-depth study of various notions	
			of mathematics.	
		Х.	Ability to think, acquire knowledge	
			and skills through logical reasoning	
			and to inculcate the habit of self	
			learning.	

Book Recommended S.Kesavan : Topics in Functional analysis and Application, Willey Eastern Ltd. Chapter: 1, 2(2.1-2.2).

Fluid Dyanamics-I

Paper-I	Content	Objectives and Expected Outcomes
Unit-I	Basic concepts, Continum hypothesis, Stress in a fluid at rest and in motion, Relation between stress and rate of strain components, Thermal conductivity, Law of heat conduction.	Objectives : To provide methods for studying the evolution of stars, ocean currents, weather patterns, plate tectonics and even blood circulation. Some important technological applications of fluid dynamics include rocket engines, wind turbines, oil pipelines and air conditioning
Unit-II	Methods of describing fluid motion, Velocity and acceleration of a fluid particle, Equation of continuity, Boundary conditions, Stream lines and Path lines, Velocity potential.	 Expected Outcomes: The student will understand stress-strain relationship in fluids, classify their behavior and also establish force balance in static systems. Further they
Unit-III	Navier-Stokes equations, Energy equations, Vorticity and circulation in viscous flow, Bernoulli's equation.	 would develop dimensionless groups that help in scale-up and scale-down of fluid flow systems. Students will be able to apply Bernouli principle and compute pressure drop in flow systems of different configurations
Unit-IV	Dimensional similarity and analysis, Reynold's law,PAI- theorem, Physical importance of non-dimensional parameters, important non- dimensional parameters, Method of finding out π product, important non-dimensional coefficients in the Dynamics of viscous fluids.	 Students will compute power requirement in fixed bed system and determine minimum fluidization velocity in fluidized bed Students will be able to describe function of flow metering devices and apply Bernoulli equation to determine the performance of flow-metering devices Students will be able to determine and analyze the performance aspects of
Unit-V	Exact solution of Navier- Stokes equations: Flow between parallel plates and flSow in circular pipes(Velocity and temperature distribution).	fluid machinery specifically for centrifugal pump and reciprocating pump

J.L. Bansal- Viscous Fluid Dynamics, IBH Publication. Chapters: 1, 2, 3(3.1-3.9), 4,(4.1-4.4).
 M.D. Raisinghania- Fluid Dynamics, S. Chand and co., Chapters: 2(2.1-2.11, 2.17-2.26), 4(4.1-4.3).

Bezier techniques for Computer Aided Geometric Design-I

(Marks-100)

Theory	- Marks	60
--------	---------	----

Paper- I	Content	Objectives and Expected Outcomes
Unit-I	Affine maps, Barycentric coordinates, Linear and piecewise linear interpolation, Hat functions, C1functions. Curves and surfaces in Euclidean spaces, Parametric curves and arc length. Frenet frame, Osculating circle.	Objectives : To concerns with the mathematical description of shape for use in computer graphics, manufacturing, or analysis. To draws upon the fields of geometry, computer graphics, numerical analysis, approximation
Unit-II	Bezier curves, The de Casteljau algorithm, Properties of Bezier curves, the Blossom, Bernstein forms of Bezier curves, Subdivision, Blossom and polar.	theory, data structures and computer algebra
Unit-III	Degree elevation, Variation diminishing property, Degree reduction, Non- parametric curves, Cross plots, Different interpolation by polynomial curves, Aitken's algorithm, Lagrange interpolation, Cubic and quintic Hermite interpolation.	Expected Outcomes: Bézier curves can be used in robotics to produce trajectories of an end- effector due to the virtue of the control polygon's ability to give a clear
Unit-IV	Spline curve in Bezier form, Smoothness conditions, C1 and C2 continuity conditions, C1-quadratic and C2-cubic B- spline curves, Pamamentrization, C1 piecewise cubic interpolation.	colliding with any nearby obstacle or object. ^[30] Furthermore, joint space trajectories can be accurately differentiated using Bézier curves.
Unit-V	cubic spline interpolation, Hermite form, end conditions and curvature plots, Minimum property.	consequently, the derivatives of joint space trajectories are used in the calculation of the dynamics and control effort (torque profiles) of the robotic manipulator. ^[30]

Practical - Marks-40

1. Constructing Bezier curves using de Casteljau algorithm and Bernstein form.

- 2. Repeated degree elevation and convergence of control polygons to the Bezier curve.
- 3. Numerical verification of Weierstrass approximation theorem.
- 4. To construct cubic and quintic Hermite interpolants.
- 5. To construct C1 and C2 spline curves.
- 6. To construct the C1-piecewise cubic interpolant for prescribed data.

7. To draw a curve close to given figure by designing first an appropriate control polygon and then the spline curve of desired shape.

8. To construct the C1-piecewise cubic spline interpolant for prescribed data.

G.Frain: Curves and Surfaces for Computer Aided Geometric Design, Academic Press, Third Edition, 1993.

		(Wai KS-100)
Paper-I	Content	Objectives and Expected Outcomes
Unit-I	The unique factorization theorem, congruences.	• To illustrate how general methods of analysis
Unit-II	Rational approximation of irrationals & Hurwitz's theorem, Quadratic residues & the representation of a number as a sum of four squares.	 can be used to obtain results about integers and prime numbers To investigate the distribution of prime numbers To consolidate earlier knowledge of analysis through applications
Unit-III	Arithmetical functions & Lattice points.	Expected Outcomes:
Unit-IV	Chebyshev theorem on the distribution of prime numbers.	The number theory helps discover interesting
Unit-V	Weyl's theorems on uniform distribution & Kronecker's theorem.	relationships between different sorts of numbers and to prove that these are true . Number Theory is partly experimental and partly theoretical. Experimental part leads to questions and suggests ways to answer them. The best known application of number theory is public key cryptography, such as the RSA algorithm. Public key cryptography in turn enables many technologies we take for granted, such as the ability to make secure online transactions Random and quasi-random number generation.

Analytic Number Theory-I

Book Recommended

K. Chandrasekharan : Introduction to Analytic Number Theory, Springer-Verlag, 1968. Chapters: 1,2,3,4,6,7,8.

> (Fourier Analysis-I) (Marks-100)

Paper-I	Content	Objectives and Expected Outcomes	
Unit-I Unit-II	Trigonmetric series and fourier series. Group structure and fourier series.	 Objectives : To know a particular method which is used to define the periodic waveform in the best way and that too in terms of the basic trigonometric functions such as sine and cosine. TO represent periodic functions using Fourier series 	
Unit-III		Expected Outcomes:	
	Convolution of	• Get an idea of power series method to solve differential	
Unit-IV	Homomorphism	polynomial	
Unit-V	of convolutions	Understands laplace transforms	
	fejer kernels, Cesaro summability	 Learns complex numbers and then properties Learns about analytic function and how to check analyticity based on Cauchy – Riemann equation To evaluate complex integral by various methods Knowing basic difference between real and complex calculus 	

R.E.Edward, Fourier Series: A Modern Introduction, Holt, Rinehart 7 winsten. Chapters: 1,2,3,4,5.

<u>Allied Electives</u> Fractals Geometry-I (Marks-100)

Paper-	Content	Objectives and Expected Outcomes	
Ι			
Unit-I	Fractals examples :	Objectives :	
	The triadic cantor dust, the sierpinski gasket, A space of strings.	Fractal geometry is a tool used to characterize irregularly shaped and complex figures. It can be used not only to generate biological structures (e.g., the human renal artery tree), but also to derive parameters such as the fractal dimension in order to	
Unit-II		quantity the shapes of structures.	
	Fractal examples :	Expected Outcomes:	
	Ture graphics, Sets		
	defined recursively,	Students will able to	
	Number system.	• Know classical fractals.	
Unit-III	Metric topology :	• express the concept of self-similarity in nature.	
	Uniform convergence. The	• express the classical fractals like Sierpinski triangle, Koch curve.	
	Hausdorff metric, Matrices for strings.	• Define the notion of YFS and give new examples	

			of attractor.
Unit-IV	Topological		• Explain the notion of attractor.
	dimension : Small		• Create new attractor examples.
	and large inductive dimension.Unit-VTwo dimensional	•	Define the notions of Countable IFS and Graph- diected IFS and give new example as an attractor
Unit-V			of them.
Euclidean space, other topological dimensions.		• Define the notions of CIFS and GIFS.	
	dimensions.		• Create new attractor examples for CIFS and GIFS.
		•	Able to define Hausdorff metric and calculate Hausdorff distance between two sets.
		•	Able to obtain fractals using a computer program.

Book Recommended G.A.Edger : Measure, Topology, Fractal Geometry, Springer-Verlag. Chapter: 1, 2(2.3-2.5), 3.

Design and Analysis of Algorithms-I (Marks-100)

Paper-I	Content	Objectives and Expected Outcomes
Unit-I	Design and analyis	
	Techniques(i) : Introduction	Objectives:
	growth of function,	The objective of the course is to teach
	Recurrence, Divide and	techniques for effective problem solving in
	Conquer	computing. The use of different paradigms of
Unit-II	Design and Analysis	problem solving will be used to illustrate clever
	Techniques(II) :	and efficient ways to solve a given problem. In
	randomization (Randomized	each case emphasis will be placed on
	quick sort, Dynamic	rigorously proving correctness of the algorithm.
	programming (Logest	
	common subsequence),	Expected Outcomes:
	Greedy Method (Single	
	source shortest path	students will demonstrate: - The abilities (1) to
	algorithms, Matroids, Task	apply knowledge of computing and
	Scheduling).	mathematics to algorithm design; (2) to analyze
		a problem and identify the computing
Unit-III		requirements appropriate for its solution; (3) to
	Analysis of Data Strucutre :	design, implement, and evaluate an algorithm
	Hash tables, Balanced Trees,	

	Binomial Heap, Amortised	to meet desired needs; and (4) to apply
	analysis, Disjoint sets.	mathematical foundations, algorithmic
		principles, and computer science theory to the
Unit-IV	Number-Theoretic	modeling and design of computer-based
	Algorithms : Moduler-	systems in a way that demonstrates
	Exponentiation, the RSA	comprehension of the trade-offs involved in
	Public-key Crypto system,	design choices An ability to apply design and
	Primality testing, Integer	development principles in the construction of
	factorization.	software systems of varying complexity An
Unit-V	Geometric Algorithms :	ability to function effectively as a member of a
	Determining line segment	team in order to accomplish a common goal
	intersection, Finding Convex	Recognition of the need for and an ability to
	Hull, finding closestpair of	engage in continuing professional
	points, Vornoi Diagram	development An ability to use current
		techniques, skills, and tools necessary for
		computing practice

(Correctness proof of algorithms along with their design and performance analysis are to be studied)

Note : Midterm test shall comprise of (i) a written examination (weightage 15%) and (ii) a test on computer implementation of some algorithms assigned by the teacher (weightage 15%) **Book Recommended**

1. T.H.Corman, C.E.Leiserson and R.L.Rivest, Introduction to Algorithms, Prentice Hall of India, 2001.

2. Aho, Hoperoft and Ullman, The Design and Analysis of Computer Algorithms, AWL, 1998.

3. M.A.Weiss, Data Structure and Algorithm Analysis in C-Addison, Wesley Longmans, 1999.

4. M.de.Btrg, M.Vankreveld, M.Overmars and O.Schwrekopf, Computational geometry - Algorithms and Applications, Springer Verlag, 2000.

	(Iviarks-100)	
Paper-	Content	Objectives and Expected
Ι		Outcomes
Unit-I	Bounded functions, Square Integrable L2	Objectives :
	Functions, Differentiable Cn Functions,	To store image data in as little
	Numerical Convergence, Pointwise	space as possible in a file Using
	Convergence, Uniform Convergence, Mean	a wavelet transform, the wavelet
	Convergence, Mean square Convergence,	compression methods are adequate
	Interchange of Limits and Integrals,	for representing transients, such as
	Trigonometric Series, Approximate Identities,	percussion sounds in audio, or
	Generalized Fourier	high-frequency components in two-
	Series.	dimensional images, for example
		an image of stars on a night sky.
Unit-II	The Fourier Transform-: Motivation and	Expected Outcomes:
	Definition, Basic Properties of the Fourier	
	Transform, Fourier Inversion, Convolution,	Student will get
	Plancherel's Formula, The Fourier Transform	a mathematical introduction to the
	for L2 Functions, Smoothness versus Decay,	

Wavelet Analysis-I (Marks-100)

	Dilation, Translation and Modulation,	wavelet theory: Continuous and
	Bandlimited Functions and the Sampling	discrete wavelet transform, wavelet
	formula, Signals, Systems, Periodic Signals	base and wavelet packages,
	and the Discrete Fourier transform, The Fast	wavelets and singular integrals.
	Fourier transform, L2 Fourier series.	Applications related for example to
		signal analysis, image processing,
Unit-III	Dyadic Step Functions, The Haar System,	numerical analysis will also be
	Haar Bases on [0; 1]; Comparison of Haar	discussed. 2. Skills The students
	Series with Fourier Series, Haar Bases on R;	should be able to handle problems
	The Discrete Haar Transform(DHT), The	and conduct researches related to
	DHT in two Dimensions, Image Analysis	theoretical and applied problems
	with DHT.	related to wavelet theory, and, more
Unit-IV	Orthonormal Systems of Translates,	generally, time-frequency analysis.
	Multiresolution Analysis- Definition and	In particular techniques connected
	Some Basic Properties of MRAs, Examples of	with signal and image processing,
	Multiresolution Analysis, Construction and	data banks should be studied. 3.
	Examples of Orthonormal Wavelet Bases,	Competence The students should be
	Necessary Properties of the Scaling Function,	able to participate in scientific
	General Spline Wavelets.	discussions and conduct researches
Unit-V	Motivation-From MRA to a Discrete	on high international level in
	Transform, The Quadrature Mirror Filter	wavelet theory and its applications
	Conditions, The	as well as to collaborate in joint
	Discrete Wavelet Transform(DWT), Scaling	interdisciplinary researches.
	Functions from Scaling Sequences.	

Book Recommended An introduction to Wavelet Analysis, David F. Walnut, Birkhauser, 2002. Ch-I, II, III(7.1-8.4).

Data Science-I (Marks-100)

Paper- I	Content	Objectives and Expected Outcomes
Unit-I	Linear Methods for Regression and Classification: Overview of supervised learning, Linear regression models and least squares, Multiple regression, Subset selection, Ridge regression, least angle regression and Lasso , Linear Discriminant Analysis , Logistic regression.	Objectives : • to explore, sort and analyze megadata from various sources in order to take advantage of them and reach conclusions to optimize business processes or for decision
Unit-II	Model Assesment and Selection :Bias,	support.
	Variance, and model complexity, Bias-variance trade off, Optimisim of the training error rate,	Expected Outcomes:
	Esimate of In-sample prediction error,	• Students will develop

	Effective number of parameters, Bayesian approach and B. IC, Cross-validation, Boot strap methods, conditional or expected test error. Dimensionality reduction (Factor analysis, PCA, Kernel PCA, Independent Component analysis, ISOMAP, LLE, feature Selection)	 relevant programming abili ties. Students will demonstrate proficiency with statistical analysis of data. Students will develop the ability to build and assess data-based models.
Unit- III	Additive Models, Trees, and Boosting: Generalized additive models, Regression and classification trees, Boosting methods- exponential loss and AdaBoost, Numerical Optimization via gradient boosting, Examples (Spam data, California housing, New Zealand fish, Demographic data)	 Students will execute statistical analyses with professional statistical software. Students will demonstrate skill in data management. Students will apply data science concepts and methods
Unit- IV	Support Vector Machines(SVM),and K- nearest Neighbor: Basis expansion and regularization, Kernel smoothing methods, SVM for classification, Reproducing Kernels, SVM for regression, K-nearest –Neighbour classifiers (Image Scene Classification)	to solve problems in real- world contexts and will communicate these solutions effectively
Unit-V	Unsupervised Learning and Random forests: Cluster analysis (k-means, Hierarchical clustering, spectral clustering), Gaussian mixtures and EM algorithm, Random forests and analysis.	

Lab work

Implementation of following methods using PYTHON

Simple and multiple linear regression, Logistic regression, Linear discreminant analysis, Ridge regression, Cross-validation and boot strap, Fitting classification and regression trees, K-nearest neighbours, Principal component analysis, K-means clustering.

Recommended Texts

1. Trevor Hastie, Robert Tibshirani, Jerome Friedman, *The Elements of Statistical Learning-Data Mining, Inference, and Prediction*, Second Edition, Springer Verlag, 2009.

2. G. James, D.Witten, T. Hastie, R. Tibshirani -An introduction to statistical learning with applications in R, Springer, 2013.

Refeerences

- 1. C. M. Bishop Pattern Recognition and Machine Learning, Springer, 2006
- 2. L. Wasserman All of statistics

Texts 1 and 2 and reference 2 are available on line.

SEMESTER-IV

MTCE401 (NUMERICAL ANALYSIS-II)

(Marks-100)

Paper-	Content	Objectives and Expected Outcomes
Unit-I Unit-II	Solution of Linear system of equations, Direct methods, Gauss elimination method, Pivoting strategy, Matrix factorization techniques crout, Dolittle and Cholesky's method Interative techniques for linear	Objectives : To design and analysis of techniques to give approximate but accurate solutions to hard problems, the variety of which is suggested by the following: Advanced numerical methods are essential in making numerical
	systems, GaussJacobi and Gauss- Seidel techniques, Approximating eigen values - Gerschgovin Circle Theorem, Power method.weather prediction feasib Expected Outcomes:	
Unit-III	Numerical solution of i.v.p. : - Euler method, Taylor method Runge-Kutta methods, Control of error in R.K.Methods.	Student can Derive numerical methods for various mathematical operations and tasks,
Unit-IV	Multti step methods, Adam Moulton and Adam-Bash for the methods, Variable step size methods, Stability.	such as interpolation, differentiation, integration, the solution of linear and nonlinear equations, and the solution of
Unit-V	BVP for ODE : The shooting method, Finite difference methods.	differential equations. Analyse and evaluate the accuracy of common numerical methods.

Books Recommended

- 1. Numerical Analysis by R.L.Burden and J.D.Faires
- 2. Introduction to Numerical Analysis by A.Z.Aitkanson, Mc-Graw Hill.

MTCE402 (NUMBER THEORY AND CRYPTOGRAPHY-II)

Paper- I	Content	Objectives and Expected Outcomes		
Unit-I	Finite fields and Quadratic residues, Knapsack problem in public key cryptography, Zero knowledge protocols.	 Objectives : To discover interesting and unexpected rela- tionships between different sorts of 		
Unit-II	Primalityandfactoring:Factoring by continued fractions,numbers and to prove that theseOuadratic sievesTo understand fundamental number-			
Unit-III	Distribution of primes, Binary quadratic forms.	theoretic algorithms such as the Euclidean algorithm, the Chinese		
Unit-IV	Discrete Logarithms ,ElGamal Cryptosystem, Algorithm for Discrete Logarithm Problem, Security of ElGamal System, Schnorr signature scheme, The ElGamal signature scheme, The digital signature algorithm, Provable secure signature schemes.	 Remainder algorithm, binary powering, and algorithms for integer arithmetic. To understand fundamental algorithms for symmetric key and public-key cryptography. To understand the number-theoretic foundations of modern cryptography and the principles behind their security. 		
Unit-V	Elliptic curves over the reals, Elliptic curves modulo a prime,	Expected Outcomes:		
	Properties of Elliptic curves, Point compression and ECIes, Computing point multiples on Elliptic curves, Elliptic curve digital signature algorithm, Elliptic curve factorization, Elliptic curve primality test	 To implement and analyze cryptographic and number-theoretic algorithms. To be able to use Maple to explore mathematical concepts and theorems. 		

1. Ramanujachary Kumanduri & Christna Romero: Number Theory with Computer Applications, Prentice Hall, New Jersey 1998.

2. Neal Koblitz: A Course of Number Theory and Cryptography(2nd Edn.), Springer-Verlag, New York, 1987.

3. I.P. Blake, G. Seroussi and N.P. Smart: Elliptic Curves in Cryptography, Cambridge Univ. Press, Cambridge,1999.

4. Douglas R. Stinson: Cryptography: Theory and Practice (3rd Edn.), Chapman Hall/CRC, 2006.

MTAE403 (ADVANCED ANALYSIS)

Paper-I	Content	Objectives and Expected Outcomes
Unit-I	Signed measure, Hahn decomposition	Objectives :

	theorem, mutually singular measures,	To study how signed measures are
	Raydon-Nikodim theorem, Lebesgue	essentially got by taking the
	decomposition, Riesz representation	difference of two measures. The
	theorem, Extension theorem(Caratheodary).	notion of absolute continuity is
Unit-II		introduces and the famous Radon-
	Completion of a measure, Lebesgue-Stieltjes	Nikodym theorem is proved for σ -
	measure, Absolutely continuous functions,	finite signed measures. The notion
	Integration by parts, Product measures,	of singularity, of one measure with
	Fubini's theorem.	respect to another.
Unit-III		
	Spaces of analytic functions, Montel's	
	theorem, Weierstrass factorization theorem,	Expected Outcomes:
	Gamma function	~
	and its properties, Riemann Zeta function.	Students taking this course will
		develop an appreciation of the basic
Unit-IV	Schwarz reection principle, Monodromy	concepts of measure theory. These
	theorem, Harmonic functions on a disc,	methods will be useful for further
	Harnack's inequality and theorem, Dirichlet	study in a range of other fields, e.g.
	problem, Green's function	Stochastic calculus, Quantum
Unit-V	Canonical products, Jensen's formula,	Theory and Harmonic analysis.
	Poisson-Jensen formula, Hadamard three	The above outcomes are related to
	circle's theorem, Order of an entire function,	the development of the Science
	Exponent of convergence, Borel's theorem,	Faculty Graduate Attributes, in
	Hadamard's factorization theorem, The	particular: 1. Kesearch, inquiry and
	range of an analytic function, Bloch's	analytical thinking abilities, 4.
	theorem, The Little Picard's theorem,	Communication, 6. Information
	Schottky's theorem, Montel caratheodary	Interacy
	and the Great Picard theorem.	

1.G.de Barra: Measure Theory and Integration, Wiley Eastern Ltd., 1981.

2.J.B. Conway: Functions of one Complex Variable, Springer-Verlag, International Student-Edition, Narosa Publishing House, 1990.

OR

MTAE403 (COMPUTATIONAL FLUID DYNAMICS-II)

Paper-I	Content	Objectives and Expected Outcomes
Unit-I	Exact solutions of Navier-Stokes'	Objectives:
	Equations: Flow in the types of	The objective of CFD is to model the
	uniform cross-sections, circular-cross	continuous fluids with Partial Differential
	section, annular cross-section, elliptic	Equations (PDEs) and discretize PDEs
	cross-section, equilateral triangular	into an algebra problem (Taylor series),

	cross-section, rectangular cross-	solve it, validate it and achieve
	section. Flow between two concentric	simulation based design.
	rotating cylinders (courtly flow):	
	velocity distribution temperature	
	distribution.	Expected Outcomes:
Unit-II		
	Stagnation point flows: Stagnation in	The students will train the numerical
	two dimensional flows (Hiemenz	solution of model problems by
	flow), rotationally symmetrical flow	developing and testing own MATLAB
	with stagnation point (Hamann flow),	programs. The students will learn to
	flow due to a rotating disc (Kärmän	assess the quality of numerical results
	flow) steady incompressible flow with	for basis fluid flow model problems
	variable viscosity plane poiscuille	Knowledge: After completion of this
	flow unstandy incompressible flow	course the student will have knowledge
	now, unsteady incompressible now	on: - Classification of the basic equations
	with constant fluid properties, flow	of fluid dynamics - Basic space and time
	due to a plane wall suddenly set in	discretization methods Numerical
	motion, flow due to an oscillating	solution of advection, diffusion and
	plane wall, starting flow in a pipe,	stationary problems Numerical solution
	plane coquette flow with transpiration	of conservation laws Analysis of
	cooling.	accuracy and stability of finite difference
		methods for model equations. Skills:
Unit-III	Two Dimensional parabolic	After completion of this course, the
	equations: Neumann boundary	student will have skills on: - Practical use
	conditions, convergence, consistency,	and programming of numerical methods
	stability (stability of initial value	in fluid dynamics Checking and
	schemes, stability of initial boundary	assessing the accuracy of numerical
	value schemes). Alternating direction	results Assessing the efficiency of
	Implicit schemes, Peaceman, Richford	numerical methods Consistency
	dimensional hyperbolic equations	analysis and von Neumann stability
	Law wendroff scheme grank Nordson	analysis of finite difference methods
	scheme Stability analysis of two	Choosing appropriate boundary
	dimensional hyperbolic equations	compations for model problems. General
	dimensional hyperbolic equations.	course, the student will have general
Unit-IV	The finite volume method for	competence on: - Numerical solution of
2	diffusion problems Finite volume	model problems in fluid dynamics -
	method for one dimensional steady	Checking and assessing basic numerical
	tette difference the finite recharge	methods for fluid flow problems.
	state diffusion, the finite volume	r
	method for convection-diffusion	
	problems, steady one-dimensional	
	convection and diffusion, the central	
	differencing scheme, properties of	
	discrimination scheme,	
	conservativeness, boundless,	
	transportiveness.	
	-	
Unit-V	Finite element method for elliptic	

model problems, finite element	
method for the model problem with	
piecewise linear functions, an error	
estimate for finite element method for	
the model problem, finite element	
method for the poisson equation.	

References:

1.An Introduction to Computational Fluid Dynamics, The finite volume method by H.K.Versteeg and W.MaLa Lasakera.

2. Numerical Methods for Partial Differential Equations by G.Evans, J.Blackledge and P.Yardley. Springer Publication.

OR

MTAE403 (THEORY OF COMPUTATION-II)

Paper-	Content	Objectives and Expected Outcomes
I		
Unit-I	Turing	Objectives:
	Machine,	
	Variants of	The major objective is to develop methods by which computer
	Turing	scientists can describe and analyze the dynamic behavior of
	Machine.	discuss can describe and analyze the dynamic behavior of
Unit-II	Definition of	discrete systems, in which signals are sampled periodically.
	Algorithm,	
	Hilbert's	Expected Outcomes:
	problem,	
	Decidable	
	Languages.	
		Students can
Unit-III	Halting	
	problem and	

	Undecidable problems from Language		 Define machine models formally. Defines finite automata
Unit-IV	Post		 Defines finite automata.
	Correspondence		• Defines regular languages.
	Mapping		• Defines turing machines.
TT •/ TT	Reducibility.		• Synthesizes finite automata with specific properties.
Unit-V Measuring Complexity, The class P and the class NP.		• Applies transformation between multiple representations of finite automata.	
			• Explains the difference between deterministic finite automata and non deterministic finite automata.
			• Explains the relationship between deterministic finite automata and regular languages.
		•	• Proves the undecidability or complexity of a variety of problems
			• Uses pigeon-holing arguments and closure properties to prove particular problems cannot be solved by finite automata.
			• Illustrates concrete examples of undecidable problems from different fields.
			• Defines and explains the significance of the "P = NP?" question and NP-completeness.
			• Illustrates concrete examples of decidable problems that are known to be unsolvable in polynomial time.

1. Michael Sipser: Introduction to the Theory of Computation, PWS Publishing Company, 1997, First Reprint 2001 by Thomson Asia Pvt. Ltd.

2. J.E. Hopcrof, Rajeev Motwani, J.D. Ullman: Introduction to Automata Theory, Languages & Computation, Pearson Education, Inc. 2001.

3. Peter Linz: An Introduction to Formal Languages & Automata, Narosa Publishing House, 1998.

MTC404 (PROJECT)

(Marks-100)

The Dept. also offers the following Core Elective Papers

Theory of Relativity-II (Marks-100)

Paper- I	Content	Objectives and Expected Outcomes	
Unit-I	Equivalence principle and measurement of the gravitational field, How mass energy generated curvature.	Objectives : Learning Objectives Einstein's two postulates in his theory of special relativity: The principle of relativity. (Same principle as in Newtonian physics) The constancy of the speed of light. (Breaks from Newtonian physics) υ Using Einstein's two postulates, derive space and time transformations between inertial reference frames (derived transformations are same as the Lorentz transformations):	
Unit-II Unit-III Unit-IV	Weak Gravitational Field. Spherical stars. Motion in Schwarzchild Geometry.	 Expected Outcomes: After successfully completed course, student will be able to Describe the basic concepts of the theory of relativity. Differentiate facts from wrong general public ideas about the theory of relativity. Discuss postulates of the special theory of relativity and their consequences. Explain the twin paradox. 	
Unit-V	Gravitational aspect of black holes.	 Explain the concept of invariance. Explain the concept of space-time. Discuss the equivalence principle. Describe gravity as space-time curvature. Describe the basic characteristics of black holes and gravity waves. Describe general theory of relativity as mathematical basis of physical cosmology. 	

Unit-I : Equivalence principle and measurement of the gravitational field, How mass energy generated curvature.

Unit-II : Weak Gravitational Field.

Unit-III : Spherical stars.

Unit-IV : Motion in Schwarzchild Geometry.

Unit-V : Gravitational aspect of black holes.

Book Recommended

Gravitation by C.W.Misner, K.S.Thorne, J.A.Wheeler, W.H.Freeman.

Chapters : 16.2 and 17(Unit-6), 18(Unit-7), 23(Unit-8), 25(Unit-9), 32.1-32.4 and 35 (Unit-10).

Sequence Spaces-II

Paper-I Content	Objectives and Expected Outcomes
-----------------	----------------------------------

Unit-I	Abel's method,	Objectives .	
	Tauberian	Objectives :	
	theorem.	To study of linear spaces endowed with some kinds of limit-	
Unit-II	Banach limits,	related structures like topology, norm, inner product etc. and the	
	Strongly	operators or functions acting upon these spaces. To know a linear	
	regular	space of functions defined on a certain set with respect to	
	matrices,	pointwise addition and scalar multiplication	
	Counting	Expected Outcomes:	
	functions	Expected Outcomes.	
Unit-III	Some matrices		
	of a special		
	type, a	After studying this course, student should be able to:	
	universal	Arter studying this course, student should be able to.	
	tauberian	• understand the Euclidean distance function on	
	theorem.	R^n and appreciate its properties, and state and use	
Unit-IV	Bounded	the Triangle and Reverse Triangle Inequalities for	
	sequences,	the Euclidean distance function on R ⁿ	
	Uniformly	• explain the definition of continuity for functions	
	limitable	from \mathbb{R}^n to \mathbb{R}^m and determine whether a given	
	sequences,	function from \mathbb{R}^n to \mathbb{R}^m is continuous	
	Intersection of	• explain the geometric meaning of each of the metric	
	bounded	• explain the geometric meaning of each of the metric space properties $(M1) - (M3)$ and be able to verify	
	convergence	whether a given distance function is a metric	
	fields.	whether a given distance random is a medic	
Unit V	Sots of	• distinguish between open and closed balls in a	
Unit- v	matrices	metric space and be able to determine them for	
	Bounds of	given metric spaces	
	limits of	• define convergence for sequences in a metric space	
	sequences	and determine whether a given sequence in a metric	
	Matrix norms.	space converges	
	Pairs of	state the definition of continuity of a function between two	
	consistent	metric spaces	
	matrices.	· · · · · r · · · · ·	

Book Recommended G.M.Paterson : Regular matrix transformation (McGraw Hill) Chapters : 2(2.4-2.5), 3, 4.

Numerical Solution of Partial Differential Equations-II (Marks-100)

	(1)	
Paper-I	Content	Objectives and Expected Outcomes
Unit-I	Sobolev spaces, Variational	
	formulation of Elliptic	Objectives:
	boundary value problems of	Classification of second order equations O
	second order, The Neumann	Finite-difference approximations O Elliptic
	boundary-value problem, The	equations to partial derivatives O Solution of
	Ritz Galerkin method,	Laplace equation O Solution of Poisson's
	Standard finite elements,	equation O Solution of elliptic equations by
	Computational considerations.	

		relaxation O Parabolic equations method O
Unit-II	Sobolev spaces, Variational	Solution of one-dimensional heat equation O
	formulation of Elliptic	Solution of two-dimensional heat equation O
	boundary value problems of	Hyperbolic equations O Solution of wave
	second order, The Neumann	equation
	boundary-value problem, The	
	Ritz Galerkin method,	Expected Outcomes:
	Standard finite elements,	
	Computational considerations.	On successful completion of this course students
		will be able to:
Unit-III	Saddle point problems, Mixed finite element methods, The stokes equation, finite element method for the stokes equation, A posteriori error estimates.	1. use knowledge of partial differential equations (PDEs), modelling, the general structure of solutions, and analytic and numerical methods for solutions.
Unit-IV	Finite element method for parabolic equations - One-	2. formulate physical problems as PDEs using conservation laws.
	dimensional problem, Semi- discretization in space, Discretization in space and time. Error estimate for fully	 understand analogies between mathematical descriptions of different (wave) phenomena in physics and engineering.
	discrete approximation, Non- linear parabolic problem, The incampressible Euler equation.	 classify PDEs, apply analytical methods, and physically interpret the solutions.
Unit-V	Domain Decomposition Method- One level algorithms: Alternating Schwarz method, Approximate Solvers, Many subdomains, Convergence behaviour, Implementation	5. solve practical PDE problems with finite difference methods, implemented in code, and analyse the consistency, stability and convergence properties of such numerical methods.
	 1ssues. Two level algorithms, Simple two level method, General two level methods, Coarse grid corrections, Convergence behaviour, Implentation issues, Multi method Schwarz methods. 	 interpret solutions in a physical context, such as identifying travelling waves, standing waves, and shock waves.

1. D.Braess: Finite Elements, Cambridge University Press, 1997. Chapters : II, III.

2. C.Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge University Press, 1990. Chapter : 8.

3. B.smith, P.Bjorstad and W.Gropp: Domain Decomposition - Parallel Multilevel Methods for elliptic Partial Differential Equations, Cambridge Unviersity Press, 1996. Chapters : 1,2. **Books Reference**

1. S.C.Brenner and L.R.Scoh: The Mathematical Theory of Finite Element Methods, Springer Verlag, 1994.

2. W.Hackbusch: Iterative Solution of Large Sparse Systems of Equations, Springer Verlag, 1994.

(Marks-100)			
Paper-I	Content	Objectives and Expected Outcomes	
Unit-I	Basic facts,	Objectives :	
	bounded	To study the study of linear operators on function spaces,	
	operators, a	beginning with differential operators and integral operators.	
	commutative		
	theorem.	Expected Outcomes:	
Unit-II	Resolution of		
	identity, the		
	spectral		
	theorem, Eigen		
	values of	i. Capability of demonstrating comprehensive	
	normal	knowledge of mathematics and understanding of	
	operators.	one or more disciplines of mathematics.	
		ii. Ability to communicate various concepts of	
Unit-III	Positive	mathematics effectively using examples and	
	operators and	their geometrical visualizations.	
	square roots,	iii. Ability to use mathematics as a precise language	
	the group of	of communication in other branches of human	
	invertible	knowledge.	
	operators, a	iv. Ability to employ critical thinking in	
	characterization	understanding the concepts in every area of	
	of B-	mathematics.	
	algebras,	v. Ability to analyze the results and apply them in	
	Unbounded	various problems appearing in different branches	
Linit IV	operators.	of mathematics.	
Unit-IV	Introduction,	vi. Additive to provide new solutions using the	
	Symmetric	appropriate questions relating to the concents in	
	operators The	various fields of mathematics	
	Caley	various fields of mathematics.	
	transform	of mathematics	
Unit-V	Resolution of	viii. Capability to understand and apply the	
	the identities.	programming concepts of C to mathematical	
	the spectral	investigations and problem solving.	
	theorem,	ix. Ability to work independently and do in-depth	
	semigroups of	study of various notions of mathematics.	
	operators	x. Ability to think, acquire knowledge and skills	
		through logical reasoning and to inculcate the	
		habit of self learning.	

Operator Theory-II (Marks-100)

Book Recommended

W.Rudin: Functional Analysis (TMH). Chapters : 12, 13.

Computational Finance-II

Paper-II	Content	Objectives and Expected Outcomes
Unit-I	Exotic and Path Dependent Options (Introduction, Barrier Options, Asian Options, Lookback Options, Computational Schemes), Options on stock indices. Currencies and futures.	Objectives : To know practical numerical methods
Unit-II	Extensions of Black-Scholes Model Limitation of Black-Scholes Model, Discrete Hedging, Transactioncosts, Volatility smiles, Stochastic volatility, Jump difusion, Dividend modelling, Pricing models for multi-asset options	and focuses on techniques that apply directly to economic analyses. It is an interdisciplinary field between mathematical finance and numerical methods.
Unit-III	Interest rates and their derivation Fixed- income products and analysis (yield, duration and convexity), Swaps, One- factor and multifactor interest rate models, Interest rate derivatives, Health- Jarrow Merton model.	 Expected Outcomes: Students will be able to: Analyze and simulate time series data using a stochastic
Unit-IV	Riskmeasurement and Management Portfolio management, Value at risk, Credit risk, Credit derivatives, risk metrics and credit metrics.	 Implement a portfolio optimization algorithm based on Modern Portfolio Theory.
Unit-V	Finite element methods for ordinarry differential equations (Galarkin method, Variational formulation,Finite elements), Finite element methods for partial differential equation (variational methods, Finite elements and assembly, Variational principle), Applications to finance	 Demonstrate an in-depth knowledge of: Bond Valuation Models. Stock Valuation Models. Options Valuation Models.

Note - The midterm test shall be on computer implementation of the methods studied.

Book Recommended

1.J.Bax & G.Chacko-Financial Derivatives : Pricing, Applications and Mathematics-Cambridge Univ. Press, 2004.

- 2. Steven Shreve-Stochastic Calculus & Finance, Vol.I & II-Springer Verlag.
- 3. P.Wilmott-Paul Willmott on Quanktative Finance-John Wiley, 2000.
- 4. Y.K.Kwok-Mathematical Models of Financial Derivatives-Springer Verlag.

5. G.Evans, J.Blackledge & P.Yardly-Numerical Methods for Partial Differential Equations-Springer Verlag, 2000.

6. Y.D.Lyun-Financial Engineering and Computation : Principles, Mathematics and Algorithms-Cambridge Univ. Press, 2002.

7. J.C.Hull-Options, Futures & other Derivatives-Prentice Hall of India, 2003.

Paper-				
Π	Content	Objectives	and Expe	cted Outcomes
Unit-I	Extensions and	Objectives	•	
	imbedding	• • • • • • • • • • • • • • • • • • • •		Student will develop
	theorems in	i	Capa	bility of demonstrating comprehensive
	Soboleve space.		knowled	be of mathematics and understanding of one
Unit-II	Compactness		(or more disciplines of mathematics.
	theorems.	ii.	Abil	ity to communicate various concepts of
Unit-III	Dual spaces.		mathem	natics effectively using examples and their
	Fractional order			geometrical visualizations.
	spaces and frace	iii.	Ability t	o use mathematics as a precise language of
	theorem.		com	munication in other branches of human
Unit-IV	Abstract		A 1 '1'	knowledge.
	variational	1V.	Ability t	o employ critical thinking in understanding
	problem :		the	concepts in every area of mathematics.
	Theroem of	v.	Ability	to analyze the results and apply them in
	stampacchia,		various p	broblems appearing in different branches of
	Lax-milgram	F		mathematics.
	and Babuska-	Expecte	ed Outcon	nes:
I.L.: 4 X7	Brezz.		;	A hilita to marrido nerro solutions using the
Unit-V	weak solutions		1.	Ability to provide new solutions using the
	of elliptic			domain knowledge of mathematics by
	boundary value			framing appropriate questions relating to
	problem : the			the concepts in various fields of
	2nd Order Dirablatia		::	To know about the advances in various
	Dirchlet s		11.	honorea of mathematics
	Noumonn			Consolity to understand and apply the
	neumann		111.	capability to understand and apply the
	Problem, Pogulation of			mathematical investigations and problem
	Regulation of			solving
	week solutions.		iv	Ability to work independently and do in-
			1.	depth study of various notions of
				mathematics
			V 7	Ability to think acquire knowledge and
			۷.	skills through logical reasoning and to
				inculcate the habit of self learning
Unit-II Unit-III Unit-IV Unit-V	Extensions and imbedding theorems in Soboleve space. Compactness theorems. Dual spaces, Fractional order spaces and frace theorem. Abstract variational problem : Theroem of stampacchia, Lax-milgram and Babuska- Brezz. Weak solutions of elliptic boundary value problem : the 2nd order Dirchlet's problem and Neumann problem, Regulation of week solutions.	Objectives i. ii. iii. v. Expecte	: Capa knowledg Abil mathen Ability t com Ability t the Ability various p ed Outcon i. ii. ii. iv. v.	Student will develop ability of demonstrating comprehensive ge of mathematics and understanding of one or more disciplines of mathematics. ity to communicate various concepts of natics effectively using examples and their geometrical visualizations. o use mathematics as a precise language of munication in other branches of human knowledge. o employ critical thinking in understanding concepts in every area of mathematics. y to analyze the results and apply them in problems appearing in different branches of mathematics. nes: Ability to provide new solutions using the domain knowledge of mathematics by framing appropriate questions relating to the concepts in various fields of mathematics. To know about the advances in various branches of mathematics. Capability to understand and apply the programming concepts of C to mathematical investigations and problem solving. Ability to think, acquire knowledge and skills through logical reasoning and to inculcate the habit of self learning.

Distribution Theory and Sobolev Spaces-II (Marks-100)

S.Kesavan: Topics in Functional Analysis and Applications (Wiley Eastern Ltd.) Chapters : 2(2.3-2.), 3(3.1, 3.2.1, 3.2.2., 3.3).

	(Mark	s-100)
Paper- II	Content	Objectives and Expected Outcomes
Unit-I	Flow in the tubes of uniform cross section, flow between two concentric rotating cylinders.	Objectives : To introduce and explain fundamentals of Fluid Dynamics, which is used in the
Unit-II	Hiemarz flow, Hamman flow, Karman flow, Flow due to suddenly accelerated plate, Oscilating plane wall, starting flow in aplane couette motion, Staring flow in a pipe, Plane coutee flow with transpiration colling.	applications of Aerodynamics, Hydraulics, Marine Engineering, Gas dynamics etc. 2.To give fundamental knowledge of fluid, its properties and behavior under various conditions of internal and external flows.
Unit-III	Theory of very slow motions, Stokes equation, Oseen's equations, flow past a sphere, Lubrication theory.	Expected Outcomes: Fluid dynamics provides methods for
Unit-IV	Theory of laminar boundary layers, Two dimensional boundary layer equations for flow over a plane wall, Blasious-Topfer solutions.	studying the evolution of stars, ocean currents, weather patterns, plate tectonics and even blood circulation. Some important technological applications of fluid dynamics
Unit-V	Flow past porous flat plate and porous circular cylinder, Karman Karman - Pohlausen method, Energy integral equation.	include rocket engines, wind turbines, oil pipelines and air conditioning systems.

Fluid Dynamics-II

Unit-I : Flow in the tubes of uniform cross section, flow between two concentric rotating cylinders.

Unit-II : Hiemarz flow, Hamman flow, Karman flow, Flow due to suddenly accelerated plate, Oscilating plane wall, starting flow in aplane couette motion, Staring flow in a pipe, Plane coutee flow with transpiration colling.

Unit-III : Theory of very slow motions, Stokes equation, Oseen's equations, flow past a sphere, Lubrication theory.

Unit-IV : Theory of laminar boundary layers, Two dimensional boundary layer equations for flow over a plane wall, Blasious-Topfer solutions.

Unit-V : Flow past porous flat plate and porous circular cylinder, Karman Karman - Pohlausen method, Energy integral equation.

Books Recommended

1. Viscous fluid dynamics by J.L.Bansal (IBM Publication).

Chapters : 4(4.5-4.12, 4.15-4.17), 5(5.1-5.4, 5.6), 6(6.1-6.3), 7(7.1-7.4, 7.6).

2. Meeredith f.W and Friffith : A.A.Paper in AARC2315, 1955, R.A.E. Report No.8.

3. Lew, H.G., Problems in J.Aero/Space Science, Vol.23, p.276, 1956.

Bezier Technique for Computer Aided Geometric Design-II(Marks-100) Theory : Marks-60

Paper- II	Content	Objectives and Expected Outcomes
Unit-I	The space of spline functions of arbitrary degree n.B-splines, Knot insertion algorithm, The de Boor algorithm, B-spline basis, Recursion formulas, respested knot insertion B- spline blossom.	Objectives : To use Bezier curves in computer graphics to produce curves which appear reasonably
Unit-II	Geometric continutiy, a characterization of G2-curves, Nusplines, C2-piecewise Bezier curves and direct G2 cubic splines, γ and β splines, Local basis function for G2-splines.	polygonal lines, which will not scale nicely). Mathematically, they are a special case of cubic Hermite interpolation (whereas polygonal lines use linear interpolation).
Unit- III	Rational Bezier curves, The de Casteljau algorithm, Derivatives, Reparametrization and degree elevation, Rational cubic B-spline curves, Interpolation with rational cubics, Rational B-spline of aribitrary degree.	Expected Outcomes: Bézier curves can be used in robotics to produce trajectories of an end-effector due to the virtue of the control polygon's
Unit- IV	Tensor product Bezier curvs, De Casteljau algorithm and degree elevation for surfaces, Composite surfaces and spline interpolation, Sommothness subdivision, biobic B- spline surfaces, Tensor product interpellants.	ability to give a clear indication of whether the path is colliding with any nearby obstacle or object. Furthermore, joint space trajectories can be accurately differentiated using Bézier curves. Consequently, the derivatives of joint space trajectories are used in the
Unit-V	(Bivariate surfaces) Bezier triangles, Barycentric coordinate and linear interpolation, Bernstein polynomials, Derivtives, Subdivision, Degree elevation, Non-parametric patches.	calculation of the dynamics and control effort (torque profiles) of the robotic manipulator.

Practical : Marks-40

1. Curvature plots of spline interpellants with different and conditions.

2. To evaluate n-th degree B-spline at a parameter value using knot insertion algorithm and de Boor algorithm.

3. To verify that by repeated knot insertion, the control polygons P' converge to the B-spline curve that they define.

4. Chaikin's algorithm.

5. To construct G1 and G2 spline curves and Beta-spline curves for a polygon. Presise refinement in shaptes achieved by verying the parametric values involved.

6. To construct rational cubic B-spline curve for a given control polygon.

7. Tensor product Bezier surfaces and Bezier triangles.

8. To verify the degree elevation process and subdivision for tensor product Bezier surface and Bezier triagle.

Book Recommended

G.Frain: Curves and surfaces for Computer Aided Geometric Design, Academic Press, Third Edition, 1993.

Paper-II	Content	Objectives and Expected Outcomes
Unit-I	Minkowski's theorem on lattice points on convex sets.	Objectives : Analytic number theory aims to study number theory by using analytic tools (inequalities, limits, calculus, etc). In this course we
Unit-II	Dirchlet's theorem on primes in an arithmetical progression, the prime number theorem.	will mainly focus on studying the distribution of prime numbers by using analysis.Expected Outcomes:
Unit-III	Quadratic residue and the quadratic reciprocity law.	student should be able to: • define fundamental objects appearing in the course such as
Unit-IV Unit-V	Primitive roots. Partitions.	 the Gamma function, Theta functions, the Riemann Zeta function, Dirichlet L-functions, Dirichlet characters, and describe the most important properties of these; use the methods from the proof of the Prime Number Theorem, such as summation by parts, integration by parts, the Mellin transform and its inverse, and simple Tauberian Theorems; give an account of deductions and proofs of important results in the course such as Dirichlet's Class Number Formula, Jacobi's Theorems on the representation of

Analytic Number Theory-II (Marks-100)

	integers as sums of squares, and apply such results in
	relevant situations.

1. K.Chandrasekharan : Introduction to Analytic Number Theory, Springer Verlag, 1968. Chapters : 9. 10, 11.

2. Tom. M.Apostal : Introduction to Analytic Number Theory, Springer International, 1980. Chapters - 9(9.1-9.8), 10(10.1-10.9), 14.

D	C	
Paper-II	Content	Objectives and Expected Outcomes
Unit-I	Cesaro summability of fourier series and its consequences	Objectives : To study how general functions can be decomposed into trigonometric or exponential functions with definite frequencies. There are two types of Fourier expansions: •
Unit-II	Some special series and their application.	Fourier series: If a (reasonably well-behaved) function is periodic, then it can be written as a discrete sum of trigonometric or exponential functions with specific frequencies. • Fourier transform: A general function that isn't
Unit-III	Fourier series in L2	necessarily periodic (but that is still reasonably well-behaved) can be written as a continuous integral of trigonometric or
Unit-IV	Positive definite	exponential functions with a continuum of possible frequencies.
	Boolinear	Expected Outcomes:
Unit-V	Pointwise	students will be able to:
	convergence of fourier series.	1. In-depth knowledge of Fourier analysis and its applications to problems in physics and electrical engineering.
		2. An ability to communicate reasoned arguments of a mathematical nature in both written and oral form.
		3. An ability to read and construct rigorous mathematical arguments.

Fourier Analysis-II (Marks-100)

Book Recommended R.E.Edward : Fourier series, A modern introduction. Chapters : 6,7,8,9,10.

Data Science II++

Paper- II	Content	Objectives and Expected Outcomes
Unit-II Unit-III	Graphical models - Directed Graphical models (Bayesian networks), Markov and Hidden Markov Models, Markov Random fields, Conditional Random fields, Exact inference for graphical models, Learning undirected Gaussian graphical models. Reinforcement learning and control- MDP, Bellman equations, value iterations and policy iteration, Linear quadratic regulation, LQG, Q-learningValue function approximation, Policysearch, Reinforce POMDPs Neural NetworksPerceptron, MLP and back propagation, Methods of acceleration of convergence of BPA, Regularization for Deep Learning: Parameter Norm Penalties, Norm Penalities as Constrained Optimization, Regularization and Under-Constrained Problems, Dataset Augmentation, Noise Robustness, Semi-Supervised Learning, Multitask Learning, Early Stopping, Parameter Tying and Parameter Sharing, Sparse Representations, Bagging and Other Ensemble Methods, Dropout, Adversarial Training, Tangent Distance, Tangent Prop and Manifold Tangent Classifier. Optimization for Training Deep Models : How Learning Differs from Pure Optimization, Challenges in Neural Network Optimization, Basic Algorithms, Parameter Initialization Strategies, Algorithms with Adaptive Learning Rates, Approximate Second-order Methods, Optimization Strategies and Meta-	 Objectives : To empowers better business decision-making through interpreting, modeling, and deployment. This helps in visualizing data that is understandable for business stakeholders to build future roadmaps and trajectories. Expected Outcomes: Students will develop relevant programming abilities. Students will demonstrate proficiency with statistical
Unit-IV	Algorithms. Convolutional Networks : The Convolution Operation, Motivation, Pooling, convolution and Pooling as an infinitely strong prior, Variants of the Basic Convolution Function, Structured Outputs, Data Types, Efficient convolution Algorithms, Random or Unsupervised	 analysis of data. Students will develop the ability to build and assess

Unit-V	Features, The Neuroscientific Basis for Convolutional Networks, Convolutional Networks and the History of Deep Learning. Sequence Modeling : Recurrent and Recursive Nets : Unfolding Computational Graphs, Recurrent Neural Networks, Bidirectional RNNs, Encoder- Decoder Sequence-to-Sequence Architecture, Deep recurrent Networks, Recursive Neural Networks, The Challenge of Long-Term Dependencies, Echo State Networks, Leaky Units and Other Strategies for Multiple Time Scales, The Long Short-Term Memory and Other Gated RNNs, Optimization for Long-Term Dependencies, Explicit Memory Practical Methodology : Performance Metrics, Default Baseline Models, Determining Whether to Gather More Data, Selecting Hyperparameters, Debugging Strategies, Example-Multi-Digit Number Recognition. Linear Factor Models : Slow Feature Analysis, Sparse Coding, Autoancodoms : Undersomplete Autoancodoms . Baselane	data-based models. • Students will execute statistical analyses with professional statistical software.
	Autoendcoders, Representational Power, Layer Size and Depth, Stochastic Encoders and Decoders, DenoisingAutoencoders, Learning Manifolds with Autoencoders, Contractive Autoencoders, Predictive Sparse Decomposition, Applications of Autoencoders, Deep Generative Models : Boltzmann Machines, Restricted Boltzmann Machines, Deep Belief Networks. Implementaion of the following algorithms: i. Convolution Neural network (CNN) ii. Recurrent Neural Network (RNN) iii. Autoencoder Deep Belief Network	

TextBooks

1. Deep Learning, Ian Goodfellow, YoshuaBengio, and Aaron courville, The MIT Press, 2016

- 2. Machine Learning-a probabilistic prospective, Kevin P. Murphy, MIT press, 2012
- 3. Machine Learning, Tom Mitchel, McGrawhill.

Allied Electives

Fractals Geometry-II (Marks-100)

Paper- II	Content	Objectives and Expected Outcomes
Unit-I	Self	Objectives:

Unit-II	similarity : Ratio lists, String models, Graph self similarity. Measures for strings, Hausdorff	To quantitatively describe self-similar or self-affined landscape shapes and facilitate the complex/ holistic study of natural objects in various scales. They also allow one to compare the values of analyses from different scales Expected Outcomes:	
	measure, Examples, Self similarity.	Students will	
Unit-III	Graph self similarity, Other fractional dimensions.	 express the concept of self-similarity in nature. express the classical fractals like Sierpinski triangle, Koch 	
Unit-IV	A three demensional dragon overlap.	 Define the notion of YFS and give new examples of attractor. Explain the notion of attractor. 	
Unit-V	Self affine sets, Other examples.	 Create new attractor examples. Define the notions of Countable IFS and Graph-diected IFS and give new example as an attractor of them. Define the notions of CIFS and GIFS. Create new attractor examples for CIFS and GIFS. 	

G.A.Edger : Measure, Topology, Fractaral Geometry (Springer-Verlag).

Chapters : 4, 5(5.5), 6, 7.

Note : Students are required to write Turbo C++ programs for each of the fractal example discussed.

	(
Paper-II	Content	Objectives and Expected Outcomes
Unit-I	Discrete Logarithms, ElGamal Cryptosystem, Algorithm for Discrete Logarithm Problem, Security of ElGamal System, Schnorr signature scheme, The ElGamal signature scheme, The	Objectives : Design and Analysis of Algorithm is very important

Design and Analysis of Algorithms-II (Marks-100)

	digital signature algorithm, Provable secure	for designing algorithm to
	signature schemes. Fast Fourier transform &	solve different types of
	Application to finding product of large integers.	problems in the branch of
Unit-II	Elliptic curves over the reals, Elliptic curves	computer science and
	modulo a prime, Properties of Elliptic curves,	information technology.
	Point compression and ECIes, Computing point	
	multiples on Elliptic curves, Elliptic curve digital	:
	signature algorithm, Elliptic curve factorization,	Expected Outcomes :
	Elliptic curve primality test.	Students who have completed
Unit-III	NP-Completeness : Polynomial time,	this course should be able to
	Polynomial-time veri_cation, NP-completeness	1. Apply design principles and
	and reducibility, NP-completeness proofs, NP-	concepts to algorithm design
	complete problems. Approximation Algorithms :	(c)
	The vertex-cover problem, The travelling	2. Have the mathematical
	salesman problem.	foundation in analysis of
Unit-IV	Parallel Algorithms (I) : Introduction to parallel	algorithms (a, j)
	computing, Performance metrics for parallel	3. Understand different
	systems, Brents theorem and work efficiency,	algorithmic design strategies
	Bass parallel algorithm design techniques	(j)
	(Balanced trees, pointer jumping, Divide and	4. Analyze the efficiency of
	conquers), Introduction to MPI.	algorithms using time and
Unit-V	Parallel Algorithms (II) : Parallel Algorithm for :	space complexity theory (b)
	Matrix-Vector multiplication, Matrix-Matrix	Assessment methods of all of
	mul-	the above: quizzes, exams,
	tiplication, solving a system of linear equations	assignments
	by Gaussian Ellimination, Iterative and	
	conjugate	
	gradient methods.	

Note : Midterm test shall comprise of (i) a written examination (weightage 15%) and (ii) a test on computer implementation of some algorithms assigned by the teacher (weightage 15%)

Book Recommended

1. T.H.Corman, C.E.Leiserson, R.L.Rivest and C.Stein, Introduction to Algorithms, Prentice Hall of India, 2001.

2. J.Jaja, An Introduction to Parallel Algorithms, Addison Wesley, 1992.

3. A.Grama, A.Gupta, G.Karypis and V.Kumar, Introduction to Parallel Computing, Pearson Education, 2003.

4. M.J.Quinn, Parallel Programming in C with MPI, Tata MagrawHill, 2003.

5. M.T.Goodrich and R.Tamassia, Algorithm Design : Foundation, analysis and internet examples.

(Iviai KS-100)			
Paper- II	Content	Objectives and Expected Outcomes	
Unit-I	Vanishing Moments, Equivalent Conditions for Vanishing Moments, The Daubechies	Objectives :	

Wavelet Analysis-II

	Wavelets, Image Analysis with Smooth	To overcome the disadvantage of
	Wavelets	STFT since CWT uses a windowing
Unit-II	Linear Independence and Biorthogonality,	technique with variable sized
	Riesz Bases and Frame Condition, Riesz	regions. Wavelet analysis allows
	Bases of Translates, Generalized	the use of long time intervals
	Multiresolution Analysis(GMRA), Riesz	where we want more precise low-
	Bases Orthogonal Across Scales, A Discrete	frequency information, and shorter
	Transform for Biothrogonal Wavelets,	regions where we want high-
	Compactly Supported Biorthogonal	frequency information.
	Wavelets.	
Unit-III	Motivation- Completing the Wavelet Tree,	Expected Outcomes:
	Localization of Wavelet Packets,	
	Orthogonality and Completeness properties	
	of Wavelet Packets, The Discrete Wavelet	Student can Recognize the key
	Packet Transform(DWPT), The Best-Basis	limitations of the Fourier transform
	Algorithm.	and the STFT, which provides a
Unit-IV	The Transform Step, The Quantization	fixed temporal resolution for all
	Step, The Coding Step, The Binary Huffman	frequency components. • Understand
	Code, A Model Wavelet Transform Image	the multi-resolution logic behind
	Coder.	wavelet analysis, which provides
Unit-V	Examples of Integral Operators, Sturm-	finer temporal (spatial) resolution for
	Liouville Boundary Value Problems, The	higher frequency components, and
	Hilbert Transform, The Radon Transform,	coarser temporal (spatial) resolution
	The BCR Algorithm, The Scale j	for lower frequency components.
	Approximation to T, Description of the	
	Algorithm.	

- 1. An introduction to Wavelet Analysis, David F. Walnut, Birkhauser, 2002. CH-III(9.1-9.3), IV, V.
- 2. C. Chui, ed., Wavelets: A Tutorial in Theory and Applications, Academic Press (1992).
- 3. M. Frazer, Introduction to Wavelets through Linear Algebra, Springer-Verlang (1999).